Open Access Review

Exploring Longitudinal MRI-Based Deep Learning Analysis in Parkinson’s Patients - A Short Survey Focus on Handedness

by Yuan Gu a,* Ziyang Wang b Yuli Wang c Yishu Gong d  and  Chen Li e orcid
a
Department of Statistics, The George Washington University, Washington, USA
b
Department of Computer Science, University of Oxford, Oxford, UK
c
Department of Biomedical Engineering, Johns Hopkins University, Baltimore, USA
d
Harvard T.H. Chan School of Public Health, Harvard University, Cambridge, MA 02138, USA
e
Department of Biology, Chemistry and Pharmacy, Free University of Berlin, 14195, Berlin, Germany
*
Author to whom correspondence should be addressed.
CI  2023, 32; 3(1), 32; https://doi.org/10.58567/ci03010006
Received: 20 November 2023 / Accepted: 13 December 2023 / Published: 28 December 2023

Abstract

Parkinson’s Disease (PD) is a prevalent progressive neurodegenerative condition affecting millions globally. Research has found that individuals with PD have a reduced risk of certain cancers, such as colon, lung, and rectal cancers, but an increased risk of brain cancer. Therefore, there is an urgent need for the development of advanced PD diagnostic methods and for investigating the relationships between risk factors, such as lifestyle due to handedness associated with various types of cancers. Recent ad- vancements in magnetic resonance imaging have enhanced PD diagnosis, reducing misdiagnosis and facilitating more accurate disease progression monitoring. Nevertheless, challenges exist, particularly in the distinction of PD between left-handed and right-handed patients over time. This survey provides an overview of contemporary deep learning-based imag- ing analysis methodologies, encompassing both non-longitudinal and lon- gitudinal contexts. We also explore existing limitations and prospects for refinement to gain deeper insights. These insights are poised to inform the development of personalized treatment strategies for PD patients while elucidating the current disparities between deep learning models and their efficacious implementation in clinical practice.


Copyright: © 2023 by Gu, Wang, Wang, Gong and Li. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) (Creative Commons Attribution 4.0 International License). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Share and Cite

ACS Style
Gu, Y.; Wang, Z.; Wang, Y.; Gong, Y.; Li, C. Exploring Longitudinal MRI-Based Deep Learning Analysis in Parkinson’s Patients - A Short Survey Focus on Handedness. Cancer Insight, 2024, 3, 32. https://doi.org/10.58567/ci03010006
AMA Style
Gu Y, Wang Z, Wang Y, Gong Y, Li C. Exploring Longitudinal MRI-Based Deep Learning Analysis in Parkinson’s Patients - A Short Survey Focus on Handedness. Cancer Insight; 2024, 3(1):32. https://doi.org/10.58567/ci03010006
Chicago/Turabian Style
Gu, Yuan; Wang, Ziyang; Wang, Yuli; Gong, Yishu; Li, Chen 2024. "Exploring Longitudinal MRI-Based Deep Learning Analysis in Parkinson’s Patients - A Short Survey Focus on Handedness" Cancer Insight 3, no.1:32. https://doi.org/10.58567/ci03010006
APA style
Gu, Y., Wang, Z., Wang, Y., Gong, Y., & Li, C. (2024). Exploring Longitudinal MRI-Based Deep Learning Analysis in Parkinson’s Patients - A Short Survey Focus on Handedness. Cancer Insight, 3(1), 32. https://doi.org/10.58567/ci03010006

Article Metrics

Article Access Statistics

References

  1. G. DeMaagd and A. Philip. (2015). Parkinson’s disease and its management: part 1: disease entity, risk factors, pathophysiology, clinical presentation, and diagnosis. Pharmacy and therapeutics, vol. 40, no. 8, p. 504. https://pubmed.ncbi.nlm.nih.gov/26236139
  2. A. Kouli, K. M. Torsney, and W.-L. Kuan. (2018). Parkinson’s disease: etiology, neuropathology, and pathogenesis. Exon Publications, pp. 3–26. https://doi.org/10.15586/codonpublications.parkinsonsdisease.2018.ch1
  3. Z. Ou, J. Pan, S. Tang, D. Duan, D. Yu, H. Nong, and Z. Wang. (2021). Global trends in the incidence, prevalence, and years lived with disability of parkinson’s disease in 204 countries/territories from 1990 to 2019. Fron- tiers in public health, vol. 9, p. 776847. https://doi.org/10.3389/fpubh.2021.776847
  4. J. Y. S. Lee, J. H. Ng, S. E. Saffari, and E.-K. Tan. (2022). Parkinson’s disease and cancer: a systematic review and meta-analysis on the influence of lifestyle habits, genetic variants, and gender. Aging (Albany NY), vol. 14, no. 5, p. 2148. https://doi.org/10.18632/aging.203932
  5. V. Sachdev, X. Tian, Y. Gu, J. Nichols, S. Sidenko, W. Li, A. Beri, W. A. Layne, D. Allen, C. O. Wu, et al. (2021). A phenotypic risk score for predicting mortality in sickle cell disease. British journal of haematology, vol. 192, no. 5, pp. 932–941. https://doi.org/10.1111/bjh.17342
  6. R. Constantinescu, M. Romer, K. Kieburtz, and D. I. of the Parkinson Study Group. (2007). Malignant melanoma in early parkinson’s disease: the datatop trial. Movement disorders, vol. 22, no. 5, pp. 720–722. https://doi.org/10.1002/mds.21273
  7. V. Sachdev, Y. Gu, J. Nichols, W. Li, S. Sidenko, D. Allen, C. Wu, and S. L. Thein. (2019). A machine learning algorithm to improve risk assessment for patients with sickle cell disease. Blood, vol. 134, p. 893. https://doi.org/10.1182/blood-2019-125846
  8. K. Rugbjerg, S. Friis, C. F. Lassen, B. Ritz, and J. H. Olsen. (2012). Malignant melanoma, breast cancer and other cancers in patients with parkinson’s disease. International journal of cancer, vol. 131, no. 8, pp. 1904–1911. https://doi.org/10.1002/ijc.27443
  9. K. H. Fiala, J. Whetteckey, and B. V. Manyam. (2003). Malignant melanoma and levodopa in parkinson’s disease: causality or coincidence?. Parkinsonism & related disorders, vol. 9, no. 6, pp. 321–327. https://doi.org/10.1016/s1353-8020(03)00040-3
  10. L.-M. Sun, J.-A. Liang, S.-N. Chang, F.-C. Sung, C.-H. Muo, and C.-H. Kao. (2011). Analysis of parkinson’s disease and subsequent cancer risk in taiwan: a nationwide population-based cohort study. Neuroepidemiology, vol. 37, no. 2, pp. 114–119. https://doi.org/10.1159/000331489
  11. L. Chougar, N. Pyatigorskaya, B. Degos, D. Grabli, and S. Lehéricy. (2020). The role of magnetic resonance imaging for the diagnosis of atypical parkinsonism. Frontiers in Neurology, vol. 11, p. 665. https://doi.org/10.3389/fneur.2020.00665
  12. Y. J. Bae, J.-M. Kim, C.-H. Sohn, J.-H. Choi, B. S. Choi, Y. S. Song, Y. Nam, S. J. Cho, B. Jeon, and J. H. Kim. (2021). Imaging the substantia nigra in parkinson disease and other parkinsonian syndromes. Radiology, vol. 300, no. 2, pp. 260–278. https://doi.org/10.1148/radiol.2021203341
  13. S. Ghaderi, A. Karami, A. Ghalyanchi-Langeroudi, N. Abdi, S. S. S. Jalali, M. Rezaei, P. Kordestani-Moghadam, S. Banisharif, M. Jalali, S. Mohammadi, et al. (2023). Mri findings in movement disorders and associated sleep dis- turbances. American Journal of Nuclear Medicine and Molecular Imaging, vol. 13, no. 3, p. 77. https://pubmed.ncbi.nlm.nih.gov/37457325
  14. V. P. Grover, J. M. Tognarelli, M. M. Crossey, I. J. Cox, S. D. Taylor- Robinson, and M. J. McPhail. (2015). Magnetic resonance imaging: principles and techniques: lessons for clinicians. Journal of clinical and experimental hepatology, vol. 5, no. 3, pp. 246–255. https://doi.org/10.1016/j.jceh.2015.08.001
  15. M. Cenek, M. Hu, G. York, and S. Dahl. (2018). Survey of image processing techniques for brain pathology diagnosis: Challenges and opportunities. Frontiers in Robotics and AI, vol. 5, p. 120. https://doi.org/10.3389/frobt.2018.00120
  16. M. Somers, L. S. Shields, M. P. Boks, R. S. Kahn, and I. E. Sommer. (2015). Cognitive benefits of right-handedness: a meta-analysis. Neuroscience & Biobehavioral Reviews, vol. 51, pp. 48–63. https://doi.org/10.1016/j.neubiorev.2015.01.003
  17. N. Verreyt, G. M. Nys, P. Santens, and G. Vingerhoets. (2011). Cognitive differences between patients with left-sided and right-sided parkinson’s disease. a review. Neuropsychology review, vol. 21, pp. 405–424. https://doi.org/10.1007/s11065-011-9182-x
  18. A. Wiberg, M. Ng, Y. Al Omran, F. Alfaro-Almagro, P. McCarthy, J. Marchini, D. L. Bennett, S. Smith, G. Douaud, and D. Furniss. (2019). Handedness, language areas and neuropsychiatric diseases: insights from brain imaging and genetics. Brain, vol. 142, no. 10, pp. 2938–2947. https://doi.org/10.1093/brain/awz257
  19. J. L. Adams, T. Kangarloo, B. Tracey, P. O’Donnell, D. Volfson, R. D. Latzman, N. Zach, R. Alexander, P. Bergethon, J. Cosman, et al. (2023). Using a smartwatch and smartphone to assess early parkinson’s disease in the watch-pd study. npj Parkinson’s Disease, vol. 9, no. 1, p. 64. https://doi.org/10.1038/s41531-023-00497-x
  20. Y. Wang, R. Herbst, and S. Abbaszadeh. (2021). Development and characterization of modular readout design for two-panel head-and-neck dedicated pet system based on czt detectors. IEEE Transactions on Radiation and Plasma Medical Sciences, vol. 6, no. 5, pp. 517–521. https://doi.org/10.1109/TRPMS.2021.3111547
  21. M. Li, Y. Wang, and S. Abbaszadeh. (2020). Development and initial characterization of a high-resolution pet detector module with doi. Biomedical physics & engineering express, vol. 6, no. 6, p. 06502. https://doi.org/10.1088/2057-1976/abbd4f
  22. Y. Wang, L. Tao, S. Abbaszadeh, and C. Levin (2021). Further investigations of a radiation detector based on ionization-induced modulation of optical polarization. Physics in Medicine & Biology, vol. 66, no. 5, p. 055013. https://doi.org/10.1088/1361-6560/abe027
  23. Y. Wang, Y. Li, F. Yi, J. Li, S. Xie, Q. Peng, and J. Xu. (2019). Two-crossed- polarizers based optical property modulation method for ionizing radiation detection for positron emission tomography. Physics in Medicine & Biology, vol. 64, no. 13, p. 135017. https://doi.org/10.1088/1361-6560/ab23cb
  24. S. Jiang, Y. Gu, and E. Kumar. (2023). Magnetic resonance imaging (mri) brain tumor image classification based on five machine learning algorithms. Cloud Computing and Data Science, pp. 122–133. https://doi.org/10.37256/ccds.4220232740
  25. H. Zhang, Y. Wang, J. Qi, and S. Abbaszadeh. (2020). Penalized maximum- likelihood reconstruction for improving limited-angle artifacts in a dedicated head and neck pet system. Physics in Medicine & Biology, vol. 65, no. 16, p. 165016. https://doi.org/10.1088/1361-6560/ab8c92
  26. R. B. Postuma, D. Berg, M. Stern, W. Poewe, C. W. Olanow, W. Oertel, J. Obeso, K. Marek, I. Litvan, A. E. Lang, et al. (2015). Mds clinical diagnostic criteria for parkinson’s disease. Movement disorders, vol. 30, no. 12, pp. 1591–1601. https://doi.org/10.1002/mds.26424
  27. M. Ulla, J. M. Bonny, L. Ouchchane, I. Rieu, B. Claise, and F. Durif (2013). Is r2* a new mri biomarker for the progression of parkinson’s disease? a longitudinal follow-up. PloS one, vol. 8, no. 3, p. e57904. https://doi.org/10.1371/journal.pone.0057904
  28. B. D. Berman, S. G. Horovitz, B. Morel, and M. Hallett. (2012). Neural cor- relates of blink suppression and the buildup of a natural bodily urge. Neuroimage, vol. 59, no. 2, pp. 1441–1450. https://doi.org/10.1016/j.neuroimage.2011.08.050
  29. D. J. Brooks. (2010). Imaging approaches to parkinson disease. Journal of Nu- clear Medicine, vol. 51, no. 4, pp. 596–609. https://doi.org/10.2967/jnumed.108.059998
  30. J. Kassubek (2021). Applied Neuroimaging Editor’s Pick 2021. Frontiers Media SA, Y. Wang, A. Feng, Y. Xue, M. Shao, A. M. Blitz, M. D. Luciano, Carass, and J. L. Prince. (2023). Investigation of probability maps in deep- learning-based brain ventricle parcellation. in Medical Imaging 2023: Image Processing, vol. 12464, pp. 565–570, SPIE. https://doi.org/10.1117/12.2653999
  31. Y. Wang, A. Feng, Y. Xue, L. Zuo, Y. Liu, A. M. Blitz, M. G. Luciano, Carass, and J. L. Prince. (2023). Automated ventricle parcellation and evan’s ratio computation in˜ pre-˜ and˜ post-surgical˜ ventriculomegaly. arXiv preprint arXiv:2303.01922. https://doi.org/10.1109/ISBI53787.2023.10230729
  32. M. Hutchinson and U. Raff. (1999). Parkinson’s disease: a novel mri method for determining structural changes in the substantia nigra. Journal of Neurology, Neurosurgery & Psychiatry, vol. 67, no. 6, pp. 815–818. https://doi.org/10.1136/jnnp.67.6.815
  33. M. Hutchinson and U. Raff. (2008). Detection of parkinson’s disease by mri: Spin-lattice distribution imaging. Movement disorders: official journal of the Movement Disorder Society, vol. 23, no. 14, pp. 1991–1997. https://doi.org/10.1002/mds.22210
  34. M. Hutchinson, U. Raff, and S. Lebedev. (2003). Mri correlates of pathology in parkinsonism: segmented inversion recovery ratio imaging (sirrim). Neuroimage, vol. 20, no. 3, pp. 1899–1902. https://doi.org/10.1136/jnnp.67.6.815
  35. P. Mahlknecht, A. Hotter, A. Hussl, R. Esterhammer, M. Schocke, and K. Seppi. (2010). Significance of mri in diagnosis and differential diagnosis of parkinson’s disease. Neurodegenerative Diseases, vol. 7, no. 5, pp. 300-318. https://doi.org/10.1159/000314495
  36. S. T. Schwarz, T. Rittman, V. Gontu, P. S. Morgan, N. Bajaj, and D. P. Auer. (2011). T1-weighted mri shows stagedependent substantia nigra signal loss in parkinson’s disease. Movement Disorders, vol. 26, no. 9, pp. 1633–1638. https://doi.org/10.1002/mds.23722
  37. K. Nakamura and K. Sugaya. (2014). Neuromelanin-sensitive magnetic resonance imaging: a promising technique for depicting tissue characteristics containing neuromelanin. Neural regeneration research, vol. 9, no. 7, p. 759. https://doi.org/10.4103/1673-5374.131583
  38. S. Reimao, P. Pita Lobo, D. Neutel, L. Correia Guedes, M. Coelho, M. Rosa, J. Ferreira, D. Abreu, N. Gonçalves, C. Morgado, et al. (2015). Substantia nigra neuromelanin magnetic resonance imaging in de novo parkinson’s disease patients. European Journal of Neurology, vol. 22, no. 3, pp. 540–546. https://doi.org/10.1111/ene.12613
  39. S. M. Smith, M. Jenkinson, M. W. Woolrich, C. F. Beckmann, T. E. Behrens, H. Johansen-Berg, P. R. Bannister, M. De Luca, I. Drobnjak, D. E. Flitney, et al. (2004). Advances in functional and structural mr image analysis and implementation as fsl. Neuroimage, vol. 23, pp. S208–S219. https://doi.org/10.1016/j.neuroimage.2004.07.051
  40. Y. Zhang, I.-W. Wu, S. Buckley, C. S. Coffey, E. Foster, S. Mendick, J. Seibyl, and N. Schuff. (2015). Diffusion tensor imaging of the nigrostriatal fibers in parkinson’s disease. Movement Disorders, vol. 30, no. 9, pp. 1229–1236. https://doi.org/10.1002/mds.26251
  41. J. H. O. Barbosa, A. C. Santos, V. Tumas, M. Liu, W. Zheng, E. M. Haacke, and C. E. G. Salmon. (2015). Quantifying brain iron deposition in patients with parkinson’s disease using quantitative susceptibility mapping, r2 and r2. Magnetic resonance imaging, vol. 33, no. 5, pp. 559–565. https://doi.org/10.1016/j.mri.2015.02.021
  42. A. Tessitore, F. Esposito, C. Vitale, G. Santangelo, M. Amboni, A. Russo, D. Corbo, G. Cirillo, P. Barone, and G. Tedeschi. (2012). Default-mode network connectivity in cognitively unimpaired patients with parkinson disease. Neurology, vol. 79, no. 23, pp. 2226–2232. https://doi.org/10.1212/wnl.0b013e31827689d6
  43. E. Tolosa, A. Garrido, S. W. Scholz, and W. Poewe. (2021). Challenges in the diagnosis of parkinson’s disease. The Lancet Neurology, vol. 20, no. 5, pp. 385–39 . https://doi.org/10.1016/s1474-4422(21)00030-2
  44. J. Volkmann, E. Moro, and R. Pahwa. (2006). Basic algorithms for the programming of deep brain stimulation in parkinson’s disease. Movement disorders: official journal of the Movement Disorder Society, vol. 21, no. S14, pp. S284–S289. https://doi.org/10.1002/mds.20961
  45. P. Aljabar, R. A. Heckemann, A. Hammers, J. V. Hajnal, and D. Rueckert. (2009). Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy. Neuroimage, vol. 46, no. 3, pp. 726–738. https://doi.org/10.1016/j.neuroimage.2009.02.018
  46. P. Coupé, J. V. Manjón, V. Fonov, J. Pruessner, M. Robles, and D. L. Collins. (2011). Patch-based segmentation using expert priors: Application to hippocampus and ventricle segmentation. NeuroImage, vol. 54, no. 2, pp. 940–954. https://doi.org/10.1016/j.neuroimage.2010.09.018
  47. Y. Xiao, S. Beriault, G. B. Pike, and D. L. Collins. (2012). Multicontrast multiecho flash mri for targeting the subthalamic nucleus. Magnetic resonance imaging, vol. 30, no. 5, pp. 627–640. https://doi.org/10.1016/j.mri.2012.02.006
  48. Y. Xiao, V. S. Fonov, S. Beriault, I. Gerard, A. F. Sadikot, G. B. Pike, and D. L. Collins. (2015). Patch-based label fusion segmentation of brainstem structures with dual-contrast mri for parkinson’s disease. International journal of computer assisted radiology and surgery, vol. 10, pp. 1029–1041. https://doi.org/10.1007/s11548-014-1119-4
  49. J. Langley, D. E. Huddleston, X. Chen, J. Sedlacik, N. Zachariah, and X. Hu. (2015). A multicontrast approach for comprehensive imaging of substantia nigra. Neuroimage, vol. 112, pp. 7–13. https://doi.org/10.1016/j.neuroimage.2015.02.045
  50. R. Krupička, S. Mareček, C. Malá, M. Lang, O. Klempíř, T. Duspivová, R. Široká, T. Jarošíková, J. Keller, K. Šonka, et al. (2019). Automatic substantia nigra segmentation in neuromelanin-sensitive mri by deep neural network in patients with prodromal and manifest synucleinopathy. Physiological Research, vol. 68, pp. S453–S458. https://doi.org/10.33549/physiolres.934380
  51. O. Ronneberger, P. Fischer, and T. Brox. (2015). U-net: Convolutional networks for biomedical image segmentation. in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, pp. 234–241, Springer. https://doi.org/10.1007/978-3-319-24574-4_28
  52. F. Milletari, N. Navab, and S.-A. Ahmadi. (2016). V-net: Fully convolutional neural networks for volumetric medical image segmentation. In 2016 fourth international conference on 3D vision (3DV), pp. 565–571, Ieee. https://doi.org/10.1109/3DV.2016.79
  53. Z. Wang and I. Voiculescu. (2021). Quadruple augmented pyramid network for multi-class covid-19 segmentation via ct. In 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 2956–2959, IEEE. https://doi.org/10.1109/embc46164.2021.9629904
  54. H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. (2017). Pyramid scene parsing network. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2881–2890. https://doi.org/10.48550/arXiv.1612.01105
  55. J. Song, Y. Gu, and E. Kumar. (2023). Chest disease image classification based on spectral clustering algorithm. Research Reports on Computer Science, pp. 77–90. https://doi.org/10.37256/rrcs.2120232742
  56. D. Zhang, F. Zhou, Y. Wei, X. Yang, and Y. Gu. (2023). Unleashing the power of self-supervised image denoising: A comprehensive review. arXiv preprint arXiv:2308.00247. https://doi.org/10.48550/arXiv.2308.00247
  57. S. Jiang, Y. Gu, and E. Kumar. (2023). Stroke risk prediction using artificial intelligence techniques through electronic health records. Artificial Intelligence Evolution, pp. 88–98. https://doi.org/10.37256/aie.4120232744
  58. Y. Gong, Z. Wang, Y. Wang, X. Li, and Y. Gu. (2023). Longitudinal analysis of step counts in parkinson disease patients: Insights from a web-based application. medRxiv, pp. 2023–11. https://doi.org/10.1101/2023.11.22.23298898
  59. Z. Zhang, S. Li, Z. Wang, and Y. Lu. (2020). A novel and efficient tumor detection framework for pancreatic cancer via ct images.In 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 1160–1164, IEEE . https://doi.org/10.1109/embc44109.2020.9176172
  60. S. Hays, L. Zuo, Y. Wang, M. G. Luciano, A. Carass, and J. L. Prince. (2023). Exploring the optimal operating mr contrast for brain ventricle parcellation. In Medical Imaging with Deep Learning, short paper track. https://doi.org/10.48550/arXiv.2304.02056
  61. H. Yu, L. T. Yang, Q. Zhang, D. Armstrong, and M. J. Deen. (2021). Convolutional neural networks for medical image analysis: state-of-the-art, comparisons, improvement and perspectives. Neurocomputing, vol. 444, pp. 92–110. http://dx.doi.org/10.1016/j.neucom.2020.04.157
  62. Z. Zhou, M. M. Rahman Siddiquee, N. Tajbakhsh, and J. Liang. (2018). Unet++: A nested u-net architecture for medical image segmentation. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MIC- CAI 2018, Granada, Spain, September 20, 2018, Proceedings 4, pp. 3–11, Springer. https://doi.org/10.1007/978-3-030-00889-5_1
  63. F. Isensee, P. F. Jaeger, S. A. Kohl, J. Petersen, and K. H. Maier-Hein. (2021). nnu-net: a self-configuring method for deep learning-based biomedical image segmentation. Nature methods, vol. 18, no. 2, pp. 203–211. https://doi.org/10.1038/s41592-020-01008-z
  64. J. Chen, Y. Lu, Q. Yu, X. Luo, E. Adeli, Y. Wang, L. Lu, A. L. Yuille, and Y. Zhou. (2021). Transunet: Transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306. https://doi.org/10.48550/arXiv.2102.04306
  65. W. Li, Y. M. Tang, Z. Wang, K. M. Yu, and S. To. (2022). Atrous residual inter- connected encoder to attention decoder framework for vertebrae segmentation via 3d volumetric ct images. Engineering Applications of Artificial Intelligence, vol. 114, p. 105102. https://doi.org/10.48550/arXiv.2104.03715
  66. Y. Wang and J. Yi. (2023). Deep learning-based image registration method: with application to scanning laser ophthalmoscopy (slo) longitudinal images. In Medical Imaging 2023: Image Processing, vol. 12464, pp. 601–605, SPIE. http://dx.doi.org/10.1117/12.2654070
  67. P. Zhou, Z. Liu, H. Wu, Y. Wang, Y. Lei, and S. Abbaszadeh. (2020). Automatically detecting bregma and lambda points in rodent skull anatomy images. PloS one, vol. 15, no. 12, p. e0244378. https://doi.org/10.1371/journal.pone.0244378
  68. Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger. (2016). 3d u-net: learning dense volumetric segmentation from sparse annotation. In Medical Image Computing and Computer-Assisted Intervention– MICCAI 2016: 19th International Conference, Athens, Greece, October 17-21, 2016, Proceedings, Part II 19, pp. 424–432, Springer. https://doi.org/10.48550/arXiv.1606.06650
  69. O. Oktay, J. Schlemper, L. L. Folgoc, M. Lee, M. Heinrich, K. Misawa, K. Mori, S. McDonagh, N. Y. Hammerla, B. Kainz, et al. (1804). Attention u-net: Learning where to look for the pancreas. arxiv 2018. arXiv preprint arXiv:1804.03999. https://doi.org/10.48550/arXiv.1804.03999
  70. O. Oktay, J. Schlemper, L. L. Folgoc, M. Lee, M. Heinrich, K. Misawa, K. Mori, S. McDonagh, N. Y. Hammerla, B. Kainz, et al. (2018). “Attention u-net: Learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 https://doi.org/10.48550/arXiv.1804.03999
  71. H. Huang, L. Lin, R. Tong, H. Hu, Q. Zhang, Y. Iwamoto, X. Han, Y.-W. Chen, and J. Wu. (2020). Unet 3+: A full-scale connected unet for medical image segmentation. In ICASSP 2020-2020 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp. 1055–1059, IEEE. https://doi.org/10.48550/arXiv.2004.08790
  72. Z. Wang, M. Su, J.-Q. Zheng, and Y. Liu. (2023). Densely connected swinunet for multiscale information aggregation in medical image segmentation. In 2023 IEEE International Conference on Image Processing (ICIP), pp. 940–944, IEEE. http://dx.doi.org/10.1109/ICIP49359.2023.10222451
  73. N. Ibtehaz and M. S. Rahman. (2020). Multiresunet: Rethinking the u-net architecture for multimodal biomedical image segmentation. Neural networks, vol. 121, pp. 74–87. https://doi.org/10.1016/j.neunet.2019.08.025
  74. K. He, X. Zhang, S. Ren, and J. Sun. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778. https://doi.org/10.1109/CVPR.2016.90
  75. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin. (2017). Attention is all you need. Advances in neural information processing systems, vol. 30. https://doi.org/10.48550/arXiv.1706.03762
  76. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. https://doi.org/10.48550/arXiv.2010.11929
  77. Y. Gu, Y. Gong, M. Wang, S. Jiang, C. Li, and Z. Yuan. (2023). Enhancing kidney failure analysis: Web application development for longitudinal trajectory clustering. medRxiv, pp. 2023–05. https://doi.org/10.1101/2023.05.31.23290804
  78. Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo. (2021). Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF international conference on computer vision, pp. 10012–10022. https://doi.org/10.1109/ICCV48922.2021.00986
  79. X. Chen, Y. Yuan, G. Zeng, and J. Wang. (2021). Semi-supervised semantic segmentation with cross pseudo supervision. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2613–2622. https://doi.org/10.48550/arXiv.2106.01226
  80. A. Tarvainen and H. Valpola. (2017). Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results. Advances in neural information processing systems, vol. 30. https://doi.org/10.48550/arXiv.1703.01780
  81. Z. Wang, J.-Q. Zheng, and I. Voiculescu. (2022). An uncertainty-aware trans- former for mri cardiac semantic segmentation via mean teachers. In Annual Conference on Medical Image Understanding and Analysis, pp. 494– 507, Springer. https://doi.org/10.1007/978-3-031-12053-4_37
  82. K. Sohn, D. Berthelot, N. Carlini, Z. Zhang, H. Zhang, C. A. Raffel, E. D. Cubuk, A. Kurakin, and C.-L. Li. (2020). Fixmatch: Simplifying semi-supervised learning with consistency and confidence. Advances in neural information processing systems, vol. 33, pp. 596–608. https://doi.org/10.48550/arXiv.2001.07685
  83. Z. Wang and I. Voiculescu. (2022). Triple-view feature learning for medical image segmentation. In MICCAI Workshop on Resource-Efficient Medical Image Analysis, pp. 42–54, Springer. https://doi.org/10.1007/978-3-031-16876-5_5
  84. D. S. Kermany, M. Goldbaum, W. Cai, C. C. Valentim, H. Liang, S. L. Baxter, A. McKeown, G. Yang, X. Wu, F. Yan, et al. (2018). Identifying medical diagnoses and treatable diseases by image-based deep learning. cell, vol. 172, no. 5, pp. 1122–1131. https://doi.org/10.1016/j.cell.2018.02.010
  85. P. R. Magesh, R. D. Myloth, and R. J. Tom. (2020). An explainable machine learning model for early detection of parkinson’s disease using lime on datscan imagery. Computers in Biology and Medicine, vol. 126, p. 104041. https://doi.org/10.1016/j.compbiomed.2020.104041
  86. Z. Wang and C. Ma. (2023). Dual-contrastive dual-consistency dual-transformer: A semi-supervised approach to medical image segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.870–879.https://openaccess.thecvf.com/content/ICCV2023W/NIVT/papers/Wang_Dual-Contrastive_Dual-Consistency_Dual-Transformer_A_Semi-Supervised_Approach_to_Medical_Image_Segmentation_ICCVW_2023_paper.pdf
  87. B. C. Tedeschini, S. Savazzi, R. Stoklasa, L. Barbieri, I. Stathopoulos, M. Nicoli, and L. Serio. (2022). Decentralized federated learning for healthcare networks: A case study on tumor segmentation. IEEE Access, vol. 10, pp. 8693–8708. http://dx.doi.org/10.1109/ACCESS.2022.3141913
  88. Z. Fan, J. Su, K. Gao, D. Hu, and L.-L. Zeng. (2021). A federated deep learning framework for 3d brain mri images. In 2021 International Joint Conference on Neural Networks (IJCNN), pp. 1–6, IEEE. http://dx.doi.org/10.1109/IJCNN52387.2021.9534376
  89. X. Li, Y. Gu, N. Dvornek, L. H. Staib, P. Ventola, and J. S. Duncan. (2020). Multisite fmri analysis using privacy-preserving federated learning and domain adaptation: Abide results. Medical Image Analysis, vol. 65, p. 101765. https://doi.org/10.1016/j.media.2020.101765
  90. M. Islam, M. T. Reza, M. Kaosar, and M. Z. Parvez. (2023). Effectiveness of federated learning and cnn ensemble architectures for identifying brain tumors using mri images. Neural Processing Letters, vol. 55, no. 4, pp. 3779– 3809. https://doi.org/10.1007/s11063-022-11014-1
  91. A. Naeem, T. Anees, R. A. Naqvi, and W.-K. Loh. (2022). A comprehensive analysis of recent deep and federated-learning-based methodologies for brain tumor diagnosis. Journal of Personalized Medicine, vol. 12, no. 2, p. 275. https://doi.org/10.3390/jpm12020275
  92. D. Ng, X. Lan, M. M.-S. Yao, W. P. Chan, and M. Feng. (2021). Federated learning: a collaborative effort to achieve better medical imaging models for individual sites that have small labelled datasets. Quantitative Imaging in Medicine and Surgery, vol. 11, no. 2, p. 852. https://doi.org/10.21037/qims-20-595
  93. Z. Wang and I. Voiculescu. (2023). Weakly supervised medical image segmentation through dense combinations of dense pseudo-labels. In MICCAI Workshop on Data Engineering in Medical Imaging, pp. 1–10, Springer. https://doi.org/10.1007/978-3-031-44992-5_1
  94. L. Yu, S. Wang, X. Li, C.-W. Fu, and P.-A. Heng. (2019). Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part II 22, pp. 605–613, Springer. https://doi.org/10.48550/arXiv.1907.07034
  95. W.-C. Hung, Y.-H. Tsai, Y.-T. Liou, Y.-Y. Lin, and M.-H. Yang. (2018). Adversarial learning for semi-supervised semantic segmentation. arXiv preprint arXiv:1802.07934. https://doi.org/10.48550/arXiv.1802.07934
  96. H. Peiris, Z. Chen, G. Egan, and M. Harandi. (2021). Duosegnet: adversarial dualviews for semi-supervised medical image segmentation. In Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part II 24, pp. 428–438, Springer. https://doi.org/10.48550/arXiv.2108.11154
  97. Z. Wang, W. Zhao, Z. Ni, and Y. Zheng. (2022). Adversarial vision transformer for medical image semantic segmentation with limited annotations. In 33rd British Machine Vision Conference 2022, BMVC 2022, London, UK, November 21-24, 2022, BMVA Press. https://bmvc2022.mpi-inf.mpg.de/1002/
  98. G. Koch, R. Zemel, R. Salakhutdinov, et al. (2015). Siamese neural networks for one-shot image recognition. In ICML deep learning workshop, Lille. https://api.semanticscholar.org/CorpusID:13874643
  99. N. Bhagwat, J. D. Viviano, A. N. Voineskos, M. M. Chakravarty, A. D. N. Initiative, et al. (2018). Modeling and prediction of clinical symptom trajectories in alzheimer’s disease using longitudinal data. PLoS computational biology, vol. 14, no. 9, p. e1006376. https://doi.org/10.1371/journal.pcbi.1006376
  100. T. Chen, Z. Lu, Y. Yang, Y. Zhang, B. Du, and A. Plaza. (2022). A siamese network based u-net for change detection in high resolution remote sensing images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 15, pp. 2357–2369. https://doi.org/10.1109/JSTARS.2022.3157648
  101. F. Xu, H. Ma, J. Sun, R. Wu, X. Liu, and Y. Kong. (2019). Lstm multi-modal unet for brain tumor segmentation. In 2019 IEEE 4th international conference on image, vision and computing (ICIVC), pp. 236–240, IEEE. https://doi.org/10.1109/ICIVC47709.2019.8981027
  102. S. Li, H. Lei, F. Zhou, J. Gardezi, and B. Lei. (2019). Longitudinal and multi- modal data learning for parkinson’s disease diagnosis via stacked sparse auto-encoder. In 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 384–387, IEEE. https://doi.org/10.1109/ISBI.2019.8759385
  103. K. H. Leung, S. P. Rowe, M. G. Pomper, and Y. Du. (2021). A three-stage, deep learning, ensemble approach for prognosis in patients with parkinson’s disease. EJNMMI research, vol. 11, no. 1, pp. 1–14. https://doi.org/10.1186/s13550-021-00795-6
  104. K. Simonyan and A. Zisserman. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556. https://doi.org/10.48550/arXiv.1409.1556
  105. G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. (2017). Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4700–4708. https://doi.org/10.48550/arXiv.1608.06993
  106. C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. (2016). Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2818–2826. https://doi.org/10.48550/arXiv.1512.00567
  107. M. Shaban. (2023). Deep learning for parkinson’s disease diagnosis: A short survey. Computers, vol. 12, no. 3, p. 58. https://doi.org/10.3390/computers12030058