Open Access Journal Article

Role of Natural Products in Combating Cancer

by Camilla Barreto a  and  Alwjandra Jandus b,*
a
Department of Pathology and Immunology, Targeting of Cytokine Secreting Lymphocyte group, Geneva University, Geneva, Switzerland.
b
Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Switzerland.
*
Author to whom correspondence should be addressed.
CI  2022, 7; 1(1), 7; https://doi.org/10.58567/ci01010003
Received: 2 June 2022 / Accepted: 17 June 2022 / Published Online: 20 June 2022

Abstract

Alternative bio actively chemicals may be found in natural goods and traditional herb medications, but only a few plant-information formulations have been rigorously studied and verified for their potential as medicinal therapies. The study of plant-derived elements' immunomodulation capabilities and their ability as provoke the immune system as combat various elemental disorders like cancer is, nonetheless, a promising area in current therapeutics information on plant-derived chemicals. This research showed how network pharmacology may be applied as define and validate natural individual elements or more complicated preparations as prospective cancer therapies information on their various aim capabilities in this research. We give a summary of the present state of understanding on network pharmacology, with a particular emphasis on various technical methods and their implications for cancer treatment.


Copyright: © 2022 by Barreto and Jandus. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) (Creative Commons Attribution 4.0 International License). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Show Figures

Share and Cite

ACS Style
Barreto, C.; Jandus, A. Role of Natural Products in Combating Cancer. Cancer Insight, 2022, 1, 7. https://doi.org/10.58567/ci01010003
AMA Style
Barreto C, Jandus A. Role of Natural Products in Combating Cancer. Cancer Insight; 2022, 1(1):7. https://doi.org/10.58567/ci01010003
Chicago/Turabian Style
Barreto, Camilla; Jandus, Alwjandra 2022. "Role of Natural Products in Combating Cancer" Cancer Insight 1, no.1:7. https://doi.org/10.58567/ci01010003
APA style
Barreto, C., & Jandus, A. (2022). Role of Natural Products in Combating Cancer. Cancer Insight, 1(1), 7. https://doi.org/10.58567/ci01010003

Article Metrics

Article Access Statistics

References

  1. Wang YJ, Fletcher R, Yu J, et al . Immunogenic effects of chemotherapy -induced tumor cell death. Genes . Dis . 2018; 5(3): 194 -203. doi:10.1016/j.gendis.2018.05.003
  2. Hopkins AL . Network pharmacology: the next paradigm in drug discovery. Nat. Chem . Biol . 2018; 4(11): 682 -690. doi:10.1038/nchembio.118
  3. Gertsch J. Botanical drugs, synergy, and network pharmacology: Forth and back to intelligent mixtures. Planta. Med . 2011; 77(11): 1086 -1098. doi:10.1055/s-0030-1270904
  4. Cragg GM, Newman DJ. Natural pro ducts: a continuing source of novel drug leads. Biochim . Biophys . Acta . 2013; 1830(6): 3670 -3695. doi:10.1016/j.bbagen.2013.02.008
  5. Danciu Corina SC, Antal Diana, Alexandra Popescu, et al . An Update on n atural compounds and t heir modern f ormulations for the management of malignant melanoma. In: Badria FA, editor Natural Products and Cancer Drug Discovery. Intech. Open.2017 ; pp 42. doi:10.5772/67647
  6. Bhatt A . Phytopharmaceuticals: A new drug class regulated in India. Perspect. Clin . Res . 2016; 7(2): 59- 61. doi:10.4103/2229-3485.179435
  7. Chinembiri TN, du Plessis LH, Gerber M , et al . Review of natural compounds for potential skin cancer treatment. Molecules 2014;19(8): 11679 -11721. doi:10.3390/molecules190811679
  8. Candeias SM, Gaipl US . The immune system in c ancer prevention, development and t herapy. Anticancer Agents Med Chem 2016;16(1): 101- 107. doi:10.2174/1871520615666150824153523
  9. Ribatti D . The concept of immune surveillance against tumors. The first theories. Oncotarget 2017; 8(4): 7175-7180. doi:10.18632/oncotarget.12739
  10. Burnet FM. The concept of immunological surveillance. Prog Exp Tumor Res 1970;13: 1 -27. doi:10.1159/000386035
  11. Dunn GP, Bruce AT, Ikeda H , et al . Cancer immunoediting: from immunosurveillance to tumor escape. Nat. Immunol . 2002; 3(11): 991 -998. doi:10.1038/ni1102-991
  12. Kaplan DH, Shankaran V, Dighe AS, et al . Demonstration of an interferon gammadependent tumor s urveillance system in immunocompetent mice. Proc . Natl . Acad . Sci . U. S. A. 1998; 95(13): 7556 -7561. doi:10.1073/pnas.95.13.7556
  13. Shankaran V, Ikeda H, Bruce AT , et al . IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 2001;410(6832): 1107 -1111. doi:10.1038/35074122
  14. Galluzzi L, Aaronson SA, Abrams J, et al . Guidelines for the use and interpretation of assays for monitoring c ell death in higher eukaryotes. Cell . Death . Differ . 2009; 16(8): 1093 -1107. doi:10.1038/cdd.2009.44
  15. Ruggero D. The role of Myc -induced protein synthesis in cancer. Cancer. Res . 2009; 69(23): 8839 -8843. doi:10.1158/0008-5472.CAN09-1970
  16. Green DR, Ferguson T, Zitvogel L , et al . Immunogenic and tolerogenic cell death. Nat . Rev . Immunol . 2009; 9(5): 353 -363. doi:10.1038/nri2545
  17. Zitvogel L, Kepp O, Kroemer G . Immune parameters affecting the efficacy of chemotherapeutic regimens. Nat. Rev . Clin . Oncol . 2010; 8(3): 151 -160. doi:10.1038/nrclinonc.2010.223
  18. Tesniere A, Apetoh L, Ghiringhelli F , et al . Immunogenic cancer cell death: a key -lock paradigm. Curr . Opin . Immunol . 2008; 20(5): 504 -511. doi:10.1016/j.coi.2008.05.007
  19. Kroemer G, Galluzzi L, Kepp O , et al . Immunogenic cell death in cancer therapy. Annu. Rev . Immunol . 2013; 31: 51- 72. doi:10.1146/annurev-immunol-032712-100008
  20. Obeid M, Tesniere A, Ghiringhelli F , et al . Calreticulin exposure dictates the immunogen icity of cancer cell death. Nat . Med . 2007; 13(1): 54 -61. doi:10.1038/nm1523
  21. Michaud M, Xie X, Bravo -San Pedro JM , et al . An autophagy- dependent anticancer immune response determines the efficacy of melanoma chemotherapy. Oncoimmunology 2014;3(7): e94 4047. doi:10.4161/21624011.2014.944047
  22. Ghiringhelli F, Apetoh L, Tesniere A , et al . Activation of the NLRP3 inflammasome in dendritic cells induces IL -1beta- dependent adaptive immunity against tumors. Nat. Med .2009; 15(10): 1170 -1178. doi:10.1038/nm.2028
  23. Garg AD, Krysko DV, Verfaillie T , et al . A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death. EMBO . J . 2012; 31(5): 1062 -1079. doi:10.1038/emboj.2011.497
  24. Apetoh L, Ghiringhelli F, T esniere A, et al. Toll-like receptor 4 -dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 2007;13(9): 1050 -1059. doi:10.1038/nm1622
  25. Shiratsuchi A, Watanabe I, Takeuchi O , et al . Inhibitory effect of Toll- like receptor 4 on fusion between phagosomes and endosomes/lysosomes in macrophages. J . Immunol . 2014;172(4): 2039 - 2047. doi:10.4049/jimmunol.172.4.2039
  26. Tesniere A, Panaretakis T, Kepp O, et al. Molecular characteristics of immunogenic cancer cell d eath. Cell. Death . Differ . 2018; 15(1): 3- 12. doi:10.1038/sj.cdd.4402269
  27. Chaput N, De Botton S, Obeid M, et al . Molecular determinants of immunogenic cell death: surface exposure of calreticulin makes the difference. J . Mol . Med . 2007; 85(10): 1069 -1076. doi:10.1007/s00109-007-0214-1
  28. Obeid M, Tesniere A, Panaretakis T , et al . Ecto -calreticulin in immunogenic chemotherapy. Immunol . Rev . 2007; 220: 22 -34. doi:10.1111/j.1600-065X.2007.00567.x
  29. Bezu L, Sauvat A, Humeau J , et al . eIF2alpha phosphorylation: A hallmark of immunogenic cell death. Oncoimmunology 2018;7(6): e1431089. doi:10.1080/2162402X.2018.1431089
  30. Nikesitch N, Lee JM, Ling S, et al. Endoplasmic reticulum stress in the development of multiple myeloma and drug resistance. Clin . Transl . Immunology 2018;7(1): e1007. doi:10.1002/cti2.1007
  31. Corazzari M, Gagliardi M, Fimia GM , et al . Endoplasmic reticulum stress, unfolded protein response, and cancer c ell fate. Front Oncol 7: 78. doi:10.3389/fonc.2017.00078
  32. Madden E, Logue SE, Healy SJ , et al . The role of the unfolded protein response in cancer progression: From oncogenesis to chemoresistance. Biol . Cell . 2019; 111(1): 1 -17. doi:10.1111/boc.201800050
  33. Staniforth V, Wang SY, Shyur LF , et al . Shikonins, phytocompounds from Lithospermum erythrorhizon, inhibit the transcriptional activation of human tumor necrosis factor alpha promoter in vivo. J . Biol. Chem . 2017; 279(7): 5877 -5885. doi:10.1074/jbc.M309185200
  34. Su PF, Staniforth V, Li CJ, et al . Immunomodulatory effects of phytocompounds characterized by in vivo transgenic human GM -CSF promoter activity in skin tissues. J . Biomed . Sci . 2008; 15(6): 813 -822. doi:10.1007/s11373-008-9266-7
  35. Chiu SC, Yang NS . Inhibition of tumor necrosis factor- alpha through selective blockade of Pre- mRNA splicing by shikonin. Mol . Pharmacol . 2007; 71(6): 1640 -1645. doi:10.1124/mol.106.032821
  36. Chen HM, Wang PH, Chen SS , et al . Shikonin induces immunogenic cell death in tumor cells and enhances dendritic cell- based cancer vaccine. Cancer . Immunol Immunother. 2012; 61(11): 1989 -2002. doi:10.1007/s00262-012-1258-9
  37. Yin SY, Efferth T, Jian FY , et al . Immunogenicity of mammary tumor cells can be induced by shikonin via direct binding -interference with hnRNPA1. O ncotarget 2016;7(28): 43629 -43653. doi:10.18632/oncotarget.9660
  38. Garg AD, Vandenberk L, Koks C , et al . Dendritic cell vaccines based on immunogenic cell death elicit danger signals and T cell -driven rejection of high -grade glioma. Sci . Transl .Med 2016;8(328): 328ra327. doi:10.1126/scitranslmed.aae0105
  39. Krysko DV, Garg AD, Kaczmarek A , et al . Immunogenic cell death and DAMPs in cancer therapy. Nat . Rev . Cancer . 2012; 12(12): 860 -875. doi:10.1038/nrc3380
  40. Turrini E, Catanzaro E, Muraro MG , et al. Hemidesmus indicus induces immunogenic death in human colorectal cancer cells. Oncotarget 2018; 9(36): 24443-24456. doi:10.18632/oncotarget.25325
  41. Castaneda DM, Pombo LM, Uruena CP , et al . A gallotannin -rich fraction from Caesalpinia spinosa (Molin a) Kuntze displays cytotoxic activity and raises sensitivity to doxorubicin in a leukemia cell line. BMC . Complement . Altern . Med . 2012; 12: 38. doi:10.1186/1472-6882-12-38
  42. Uruena C, Gomez A, Sandoval T , et al . Multifunctional T lymphocytes generated after therapy with an antitumor g allotanin -r ich normalized fraction are related to p rimary tumor size reduction in a breast cancer model. Integr. Cancer . Ther . 2015; 14(5): 468 -483. doi:10.1177/1534735415596425
  43. Gomez -Cadena A, Uruena C, Prieto K , et al. Immune -system dependent anti -tumor activity of a plant -derived polyphenol rich fraction in a melanoma mouse model. Cell . Death . Dis . 2016; 7(6): e2243. doi:10.1038/cddis.2016.134
  44. Prieto K, Cao Y, Mohamed E , et al . Polyphenol -rich extract induces a poptosis with immunogenic markers in melanoma cells through the ER stress -associated kinase PERK. Cell . Death . Discov 2019;5: 134. doi:10.1038/s41420-019-0214-2
  45. Ren Y, Wei M, Still PC, et al. Synthesis and antitumor activity of ellagic acid peracetate. ACS . Med . Chem . Lett 2012; 3(8): 631 -636. doi:10.1021/ml300065z
  46. Li X, Dong W, Nalin AP , et al . The natural product chitosan enhances the anti -tumor activity of natural killer cells by activating dendritic cells. Oncoimmunology 2018;7(6): e1431085. doi:10.1080/2162402X.2018.1431085
  47. Deng Y, Chu J, Ren Y, et al . The natural product phyllanthusmin C enhances IFN -gamma production by human NK cells t hrough upregulation of TLR -mediated NF -kappaB signaling. J . Immunol 2014;193(6): 2994 -3002. doi:10.4049/jimmunol.1302600
  48. Kunnumakkara AB, Anand P, Aggarwal B. Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer . Lett . 2008; 269(2): 199 -225. doi:10.1016/j.canlet.2008.03.009
  49. Chang YF, Chuang HY, Hsu CH , et al . Immunomodulation of curcumin on adoptive therapy with T cell functional imaging in mi ce. Cancer. Prev . Res . (Phila) 2012;5(3): 444 -452. doi:10.1158/1940-6207.CAPR-11-0308
  50. Dai Y, Kato M, Takeda K, et al . T-cell -immunity -based inhibitory effects of orally administered herbal medicine juzen -taiho -to on the growth of primarily developed melanocytic tumors in RET-transgenic mice. J . Invest . Dermatol . 2001; 117(3): 694 -701. doi:10.1046/j.0022-202x.2001.01457.x
  51. Foster K, Younger N, Aiken W , et al . Reliance on medicinal plant therapy among cancer patients in Jamaica. Cancer Causes Contr ol 2017; 28(11): 1349 -1356. doi:10.1007/s10552-017-0924-9
  52. Hernandez JF, Uruena CP, Cifuentes MC , et al . A Petiveria alliacea standardized fraction induces breast adenocarcinoma cell death by modulating glycolytic metabolism. J .Ethnopharmacol 2014;153(3): 641 -649. doi:10.1016/j.jep.2014.03.013
  53. John F.Hernández CPU, Tito A.Sandoval, Maria C.Cifuentes , et al . A cytotoxic Petiveria alliacea dry extract induces ATP depletion and decreases βF1 -ATPase expression in breast cancer cells and promotes survi val in tumor-bearing mice. Revista Brasileira de Farmacognosia 2017; 27(3): 306- 314. doi:10.1016/j.bjp.2016.09.008
  54. Junio HA, Sy- Cordero AA, Ettefagh KA , et al . Synergy -directed fractionation of botanical medicines: a case study with goldenseal (Hydrastis canadensis). J . Nat . Prod . 2011; 74(7): 1621 -1629. doi:10.1021/np200336g
  55. Ettefagh KA, Burns JT , et al . Goldenseal (Hydrastis canadensis L.) extracts synergistically enhance the antibacterial activity of berberine via efflux pump inhibition. Planta . Med 2011; 77(8): 835 -840. doi:10.1055/s-0030-1250606
  56. Lovelace ES, Polyak SJ. Natural products as t ools for defining how cellular metabolism influences cellular i mmune and i nflammatory function during chronic infection. Viruses 2015;7(12): 6218 - 6232. doi:10.3390/v7122933
  57. Bolognesi ML, Budriesi R, Chiarini A , et al . Design, synthesis, and biological activity of prazosin -related antagonists. Role of the piperazine and furan units of prazosin on the selectivity for alpha1-adrenoreceptor subtypes. J . Med . Chem . 1998; 41(24): 4844 -4853. doi:10.1021/jm9810654
  58. Melchiorre C, Andrisano V, Bolognesi ML, et al . Acetylcholinesterase noncovalent inhibitors based on a polyamine backbone for potential use ag ainst Alzheimer's disease. J. Med . Chem 1998; 41(22): 4186 -4189. doi:10.1021/jm9810452
  59. Bolognesi ML, Cavalli A . Multitarget drug discovery and p olypharmacology. Chem .Med .Chem 2016;11(12): 1190 -1192. doi:10.1002/cmdc.201600161
  60. Wing Lam SB, Fulan Guan, Zaoli Jiang, et al . The f our-h erb Chinese m edicine PHY906 reduces chemotherapy -i nduced gastrointestinal toxicity science translational medicine 2010;2(45): 45ra59. doi:10.1126/scitranslmed.3001270
  61. Gatti A, Sabato E, Di Paolo AR, et al. Oxycodone/paracetamol: A low- dose synergic combination useful in different types of pain. Clin . Drug . Investig . 2010; 30 (Suppl 2): 3 -14. doi:10.2165/1158414-S0-000000000-00000
  62. Chung J, DiGiusto DL, Rossi JJ. Combinatorial RNA -based gene therapy for the treatment of HIV/AIDS. Expert. Opin . Biol. Ther .2013; 13(3): 437 -445. doi:10.1517/14712598.2013.761968
  63. Pirrone V, Thakkar N, Jacobson JM, et al . Combinatorial approaches to the prevention and treatment of HIV -1 infection. Antimicrob Agents Chemother 2001;55(5): 1831 -1842. doi:10.1128/AAC.00976-10
  64. Nanayakkara AK, Follit CA, Chen G , et al . Targeted inhibitors of P -glycoprotein increase chemotherapeutic -induced mortality of multidrug resistant tumor cel ls. Sci. Rep 2018; 8(1): 967. doi:10.1038/s41598-018-19325-x
  65. Mukhtar H, Ahmad N. Tea polyphenols: prevention of cancer and optimizing health. Am J . Clin . Nutr 2000; 71(6 Suppl ): 1698S1702S; discussion 1703S -1694S. doi:10.1093/ajcn/71.6.1698S
  66. Shimizu M, Deguchi A, Lim JT , et a l. ( -) -Epigallocatechin gallate and polyphenon E inhibit growth and activation of the epidermal growth factor receptor and human epidermal growth fac tor receptor-2 signaling pathways in human colon cancer cells. Clin . Cancer . Res . 2005; 11(7): 2735 -2746. doi:10.1158/1078-0432.CCR-04-2014
  67. Lambert JD, Hong J, Yang GY, et al . Inhibition of carcinogenesis by polyphenols: evidence from laboratory inves tigations. Am . J . Clin . Nutr . 2005; 81(1 Suppl): 284S -291S. doi:10.1093/ajcn/81.1.284S
  68. Nam S, Smith DM, Dou Q. Ester bond -containing tea polyphenols potently inhibit proteasome activity in vitro and in vivo. J . Biol. Chem 2001;276(16): 13322 -13330. do i: 10.1074/jbc.M004209200
  69. Adhami VM, Siddiqui IA, Ahmad N , et al . Oral consumption of green tea polyphenols inhibits insulin -like growth factor -I- induced signaling in an autochthonous mouse model of prostate cancer. Cancer . Res . 2004; 64(23): 8715 -8722 . doi:10.1158/0008-5472.CAN-04-2840
  70. Moreira R, Pereira DM, Valentao P , et al . Pyrrolizidine alkaloids: Chemistry, p harmacology, toxicology and food s afety. Int . J . Mol . Sci . 2018; 19(6): E1668. doi:10.3390/ijms19061668
  71. Nortier JL, Martinez MC, Schmeiser HH , et al . Urothelial carcinoma associated with the use of a Chinese herb (Aristolochia fangchi). N . Engl . J . Med . 2000; 342(23): 1686 -1692. doi:10.1056/NEJM200006083422301
  72. Ekor M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol 2014;4: 177. doi:10.3389/fphar.2013.00177
  73. Lasso P, Gomez -Cadena A, Uruena C , et al . Prophylactic vs. t herapeutic treatment with P2Et p olyphenol-r ich e xtract has opposite effects on tumor growth. Front . Oncol . 2018; 8: 356. doi:10.3389/fonc.2018.00356
  74. Barabasi AL, Gulbahce N, Loscalzo J. Network medicine: a network -based approach to human disease. Nat . Rev . Genet. 2011; 12(1): 56 - 68. doi:10.1038/nrg2918
  75. M encher SK, Wang LG. Promiscuous drugs compared to selective drugs (promiscuity can be a virtue). BMC . Clin . Pharmacol . 2005; 5: 3. doi:10.1186/1472-6904-5-3
  76. Poornima P, Kumar JD, Zhao Q , et al . Network pharmacology of cancer: From understanding of com plex interactomes to the design of multi -target specific therapeutics from nature. Pharmacol . Res 2016; 111: 290 -302. doi:10.1016/j.phrs.2016.06.018
  77. Fan X, Zhao X, Jin Y, et al. Network toxicology and its application to traditional Chinese medicine. Zhongguo . Zhong . Yao . Za . Zhi 2001; 36(21): 2920 -2922. PMID: 22308674
  78. Lee AY, Park W, Kang TW , et al . Network pharmacology -based prediction of active compounds and molecular target s in Yijin -Tang acting on hyperlipidaemia and atherosclerosis. J . Ethnopharmacol 2018’221: 151 -159. doi:10.1016/j.jep.2018.04.027
  79. Zhang S, Shan L, Li Q , et al . Systematic analysis of the multiple bioactivities of green tea through a network p harmacol ogy approach. Evid Based Complement Alternat Med 2014: 512081. doi:10.1155/2014/512081
  80. Gao L, Wang XD, Niu YY, et al . Molecular targets of Chinese herbs: a clinical study of hepatoma based on network pharmacology. Sci . Rep 2016; 6: 24944. doi:10.1038/srep24944
  81. Ramsay RR, Popovic -Nikolic MR, et al . A perspective on multi -target drug discovery and design for complex diseases. Clin . Transl . Med 2018; 7(1): 3. doi:10.1186/s40169-017-0181-2
  82. Yildirim MA, Goh KI, Cusick ME , et al . Drug ta rget network. Nat. Biotechnol 2007;25(10): 1119 -1126. doi:10.1038/nbt1338
  83. Cavalli A, Bolognesi ML, Minarini A , et al . Multi -target -directed ligands to combat neurodegenerative diseases. J . Med . Chem . 2008; 51(3): 347 -372. doi:10.1021/jm7009364
  84. Liu Z, Du J, Yan X , et al . TCM a nalyzer: A chemo - and bioinformatics web service for analyzing traditional Chinese medicine. J. Chem . Inf . Model . 2018; 58(3): 550 -555. doi:10.1021/acs.jcim.7b00549
  85. Wong YH, Lin CL, Chen TS , et a l. Multiple target drug cocktail design for attacking the core network markers of four cancers using ligand -based and structure -based virtual screening methods. B .M .C Med . Genomics 2015;8 (4): S4. doi:10.1186/1755-8794-8-S4-S4
  86. Kepp O, Menger L, Vacchelli E, et al . Crosstalk between ER stress and immunogenic cell death. Cytokine Growth . Facto . Rev . 2013; 24(4): 311- 318. doi: 10.1016/j.cytogfr.2013.05.001