Nanozyme with biomimetic enzyme activity has the advantages of good catalytic performance, high stability, and is not easily affected by temperature. However, the application of tumor microenvironment (TME) in the tumor is limited due to its low catalytic activity. Herein, a multifunctional nanozyme based on CuCoP with multivalent metal ions (Cu+/Cu2+ and Co2+/ Co3+) provides an innovative strategy for constructing acid-responsive cancer therapy. CuCoP has excellent photothermal properties (photothermal conversion efficiency of 66.9%) as well as glutathione (GSH) peroxidase activity and high photo-enhanced peroxidase-like (POD) enzyme activity in weak acid TME. CuCoP can consume the overexpressed GSH, thus alleviating the antioxidant capacity of the tumor, and reduces Cu2+/ Co3+ to Cu+/ Co 2+. Subsequently, the generated Cu+/Co2+ will react with endogenous H2O2 to generate cytotoxic hydroxyl radical (•OH), which have high catalytic efficiency in weakly acidic TME. Crucially, the synergistic effect of PTT and the cascade reaction of bimetallic atoms with GSH and H2O2 can effectively reduce antioxidant capacity, inhibit tumors and trigger effective immune cell death (ICD) process, which caused a strong immune response and inhibit tumor recurrence and metastasis. As a novel bimetallic sulfide nanoenzyme triggered by TME, CuCoP has great research value in cancer therapy.
Zhao, X. Bimetallic phosphidethe nanoparticles as photo-enhanced nanozymes for synergistic cancer immunotherapy. Cancer Insight, 2024, 3, 39. https://doi.org/10.58567/ci03030001
AMA Style
Zhao X. Bimetallic phosphidethe nanoparticles as photo-enhanced nanozymes for synergistic cancer immunotherapy. Cancer Insight; 2024, 3(3):39. https://doi.org/10.58567/ci03030001
Chicago/Turabian Style
Zhao, Xingru 2024. "Bimetallic phosphidethe nanoparticles as photo-enhanced nanozymes for synergistic cancer immunotherapy" Cancer Insight 3, no.3:39. https://doi.org/10.58567/ci03030001
APA style
Zhao, X. (2024). Bimetallic phosphidethe nanoparticles as photo-enhanced nanozymes for synergistic cancer immunotherapy. Cancer Insight, 3(3), 39. https://doi.org/10.58567/ci03030001
Article Metrics
Article Access Statistics
References
Wang Y, Cai R, Chen C. (2019). The Nano-Bio Interactions of Nanomedicines: Understanding the Biochemical Driving Forces and Redox Reactions. Acc. Chem. Res. 52, 1507-1518. https://doi.org/10.1021/acs.accounts.9b00126
Xu B, Cui Y, Wang W, Li S, Lyu C, Wang S, Bao W, Wang H, Qin M, Liu Z, Wei W, Liu H. (2020). Immunomodulation-Enhanced Nanozyme-Based Tumor Catalytic Therapy. Adv. Mater. 32, e2003563. https://doi.org/10.1002/adma.202003563
Fan K, Xi J, Fan L, Wang P, Zhu C, Tang Y, Xu X, Liang M, Jiang B, Yan X, Gao L. (2018). In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat. Commun. 9, 1440. https://doi.org/10.1038/s41467-018-03903-8
Wang Z, Zhang Y, Ju E, Liu Z, Cao F, Chen Z, Ren J, Qu X. (2018). Biomimetic nanoflowers by self-assembly of nanozymes to induce intracellular oxidative damage against hypoxic tumors. Nat. Commun. 9, 3334. https://doi.org/10.1038/s41467-018-05798-x
Zhao Y, Xiao X, Zou M, Ding B, Xiao H, Wang M, Jiang F, Cheng Z, Ma P, Lin J. (2020). Nanozyme-Initiated In Situ Cascade Reactions for Self-Amplified Biocatalytic Immunotherapy. Adv. Mater., e2006363. https://doi.org/10.1002/adma.202006363
Ma B, Wang S, Liu F, Zhang S, Duan J, Li Z, Kong Y, Sang Y, Liu H, Bu W, Li L. (2019). Self-Assembled Copper-Amino Acid Nanoparticles for in Situ Glutathione "AND" H2O2 Sequentially Triggered Chemodynamic Therapy. J. Am. Chem. Soc. 141, 849-857. https://doi.org/10.1021/jacs.8b08714
Jiang B, Duan D, Gao L, Zhou M, Fan K, Tang Y, Xi J, Bi Y, Tong Z, Gao GF, Xie N, Tang A, Nie G, Liang M, Yan X. (2018). Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 13, 1506-1520. https://doi.org/10.1038/s41596-018-0001-1
Wang D, Wang T, Yu H, Feng B, Zhou L, Zhou F, Hou B, Zhang H, Luo M, Li Y. (2019). Engineering nanoparticles to locally activate T cells in the tumor microenvironment. Sci. Immunol. 4. https://doi.org/10.1126/sciimmunol.aau6584
Qin L, Cao J, Shao K, Tong F, Yang Z, Lei T, Wang Y, Hu C, Umeshappa CS, Gao H, Peppas NA. (2020). A tumor-to-lymph procedure navigated versatile gel system for combinatorial therapy against tumor recurrence and metastasis. Sci. Adv. 6. https://doi.org/10.1126/sciadv.abb3116
Huang Y, Ren J, Qu X. (2019). Nanozymes: Classification, Catalytic Mechanisms, Activity Regulation, and Applications. Chem. Rev. 119, 4357-4412. https://doi.org/10.1021/acs.chemrev.8b00672
Huang L, Chen J, Gan L, Wang J, Dong S. (2019). Single-atom nanozymes. Sci. Adv. 5, eaav5490. https://doi.org/10.1126/sciadv.aav5490
Konduri V, Joseph SK, Byrd TT, Nawas Z, Vazquez-Perez J, Hofferek CJ, Halpert MM, Liu D, Liang Z, Baig Y, Salsman VS, Oyewole-Said D, Tsimelzon A, Burns BA, Chen C, Levitt JM, Yao Q, Ahmed NM, Hegde M, Decker WK. (2021). A subset of cytotoxic effector memory T cells enhances CAR T cell efficacy in a model of pancreatic ductal adenocarcinoma. Sci. Transl. Med. 13. https://doi.org/10.1126/scitranslmed.abc3196
Moding EJ, Castle KD, Perez BA, Oh P, Min HD, Norris H, Ma Y, Cardona DM, Lee CL, Kirsch DG. (2015). Tumor cells, but not endothelial cells, mediate eradication of primary sarcomas by stereotactic body radiation therapy. Sci. Transl. Med. 7, 278ra234. https://doi.org/10.1126/scitranslmed.aaa4214
Zhou Z, Wu H, Yang R, Xu A, Zhang Q, Dong J, Qian C, Sun M. (2020). GSH depletion liposome adjuvant for augmenting the photothermal immunotherapy of breast cancer. Sci. Adv. 6. https://doi.org/10.1126/sciadv.abc4373
Lin X, Liu S, Zhang X, Zhu R, Chen S, Chen X, Song J, Yang H. (2020). An Ultrasound Activated Vesicle of Janus Au-MnO Nanoparticles for Promoted Tumor Penetration and Sono-Chemodynamic Therapy of Orthotopic Liver Cancer. Angew. Chem., Int. Ed. Engl. 59, 1682-1688. https://doi.org/10.1002/anie.201912768
Ding B, Zheng P, Jiang F, Zhao Y, Wang M, Chang M, Ma P, Lin J. (2020). MnOx Nanospikes as Nanoadjuvants and Immunogenic Cell Death Drugs with Enhanced Antitumor Immunity and Antimetastatic Effect. Angew. Chem., Int. Ed. Engl. 59, 16381-16384. https://doi.org/10.1002/anie.202005111
Yu M, Duan X, Cai Y, Zhang F, Jiang S, Han S, Shen J, Shuai X. (2019). Multifunctional Nanoregulator Reshapes Immune Microenvironment and Enhances Immune Memory for Tumor Immunotherapy. Adv. Sci. (Weinh). 6, 1900037. https://doi.org/10.1002/advs.201900037
Wang D, Wu H, Lim WQ, Phua SZF, Xu P, Chen Q, Guo Z, Zhao Y. (2019). A Mesoporous Nanoenzyme Derived from Metal-Organic Frameworks with Endogenous Oxygen Generation to Alleviate Tumor Hypoxia for Significantly Enhanced Photodynamic Therapy. Adv. Mater. 31, e1901893. https://doi.org/10.1002/adma.201901893
Tian Q, Tang M, Sun Y, Zou R, Chen Z, Zhu M, Yang S, Wang J, Wang J, Hu J. (2011). Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells. Adv. Mater. 23, 3542-3547. https://doi.org/10.1002/adma.201101295
Xu C, Teng Z, Zhang Y, Yuwen L, Zhang Q, Su X, Dang M, Tian Y, Tao J, Bao L, Yang B, Lu G, Zhu J. (2018). Flexible MoS2-Embedded Human Serum Albumin Hollow Nanocapsules with Long Circulation Times and High Targeting Ability for Efficient Tumor Ablation. Advanced Functional Materials. 28. https://doi.org/10.1002/adfm.201804081
Wang S, Chen Y, Li X, Gao W, Zhang L, Liu J, Zheng Y, Chen H, Shi J. (2015). Injectable 2D MoS2 -Integrated Drug Delivering Implant for Highly Efficient NIR-Triggered Synergistic Tumor Hyperthermia. Adv Mater. 27, 7117-7122. https://doi.org/10.1002/adma.201503869
Chang M, Wang M, Wang M, Shu M, Ding B, Li C, Pang M, Cui S, Hou Z, Lin J. (2019). A Multifunctional Cascade Bioreactor Based on Hollow-Structured Cu2MoS4 for Synergetic Cancer Chemo-Dynamic Therapy/Starvation Therapy/Phototherapy/Immunotherapy with Remarkably Enhanced Efficacy. Adv. Mater. 31. https://doi.org/10.1002/adma.201905271
Yang F, Hu S, Zhang Y, Cai X, Huang Y, Wang F, Wen S, Teng G, Gu N. (2012). A hydrogen peroxide-responsive O(2) nanogenerator for ultrasound and magnetic-resonance dual modality imaging. Adv. Mater. 24, 5205-5211. https://doi.org/10.1002/adma.201202367
Wang X, Zhao Y, Shi L, Hu Y, Song G, Cai K, Li M, Luo Z. (2021). Tumor-Targeted Disruption of Lactate Transport with Reactivity-Reversible Nanocatalysts to Amplify Oxidative Damage. Small. e2100130. https://doi.org/10.1002/smll.202100130
Chen Y, Li ZH, Pan P, Hu JJ, Cheng SX, Zhang XZ. (2020). Tumor-Microenvironment-Triggered Ion Exchange of a Metal-Organic Framework Hybrid for Multimodal Imaging and Synergistic Therapy of Tumors. Adv. Mater. 32, e2001452. https://doi.org/10.1002/adma.202001452
Li ZH, Chen Y, Sun Y, Zhang XZ. (2021). Platinum-Doped Prussian Blue Nanozymes for Multiwavelength Bioimaging Guided Photothermal Therapy of Tumor and Anti-Inflammation. ACS Nano. 15, 5189-5200. https://doi.org/10.1021/acsnano.0c10388
Pu Z, Liu T, Amiinu IS, Cheng R, Wang P, Zhang C, Ji P, Hu W, Liu J, Mu S. (2020). Transition‐Metal Phosphides: Activity Origin, Energy‐Related Electrocatalysis Applications, and Synthetic Strategies. Adv. Funct. Mater. 30. https://doi.org/10.1002/adfm.202004009
Wei XK, Bihlmayer G, Zhou X, Feng W, Kolen'ko YV, Xiong D, Liu L, Blügel S, Dunin-Borkowski RE. (2020). Discovery of Real-Space Topological Ferroelectricity in Metallic Transition Metal Phosphides. Adv. Mater. 32. https://doi.org/10.1002/adma.202003479
Chen D, Pu Z, Lu R, Ji P, Wang P, Zhu J, Lin C, Li HW, Zhou X, Hu Z, Xia F, Wu J, Mu S. (2020). Ultralow Ru Loading Transition Metal Phosphides as High-Efficient Bifunctional Electrocatalyst for a Solar-to-Hydrogen Generation System. Adv. Energy. Mater. https://doi.org/10. 10.1002/aenm.202000814
Lu XF, Yu L, Lou XWD. (2019). Highly crystalline Ni-doped FeP/carbon hollow nanorods as all-pH efficient and durable hydrogen evolving electrocatalysts. Sci. Adv. 5, eaav6009. https://doi.org/10.1126/sciadv.aav6009
Liu Y, Wu J, Jin Y, Zhen W, Wang Y, Liu J, Jin L, Zhang S, Zhao Y, Song S, Yang Y, Zhang H. (2019). Copper(I) Phosphide Nanocrystals for In Situ Self-Generation Magnetic Resonance Imaging-Guided Photothermal-Enhanced Chemodynamic Synergetic Therapy Resisting Deep-Seated Tumor. Adv.Funct. Mater. 29. https://doi.org/10.1002/adfm.201904678
Liu Y, Zhen W, Wang Y, Liu J, Jin L, Zhang T, Zhang S, Zhao Y, Song S, Li C, Zhu J, Yang Y, Zhang H. (2019). One-Dimensional Fe2P Acts as a Fenton Agent in Response to NIR II Light and Ultrasound for Deep Tumor Synergetic Theranostics. Angew. Chem., Int. Ed, Engl. 58, 2407-2412. https://doi.org/10.1002/anie.201813702
Liu Y, Zhen W, Wang Y, Liu J, Jin L, Zhang T, Zhang S, Zhao Y, Yin N, Niu R, Song S, Zhang L, Zhang H. (2019). Double Switch Biodegradable Porous Hollow Trinickel Monophosphide Nanospheres for Multimodal Imaging Guided Photothermal Therapy. Nano Lett. 19, 5093-5101. https://doi.org/10.1021/acs.nanolett.9b01370
Li L, Chen C, Liu H, Fu C, Tan L, Wang S, Fu S, Liu X, Meng X, Liu H. (2016). Multifunctional Carbon-Silica Nanocapsules with Gold Core for Synergistic Photothermal and Chemo-Cancer Therapy under the Guidance of Bimodal Imaging. Adv. Funct. Mater. 26, 4252-4261. https://doi.org/10.1002/adfm.201600985
Li L, Fu S, Chen C, Wang X, Fu C, Wang S, Guo W, Yu X, Zhang X, Liu Z, Qiu J, Liu H. (2016). Microenvironment-Driven Bioelimination of Magnetoplasmonic Nanoassemblies and Their Multimodal Imaging-Guided Tumor Photothermal Therapy. ACS Nano. 10, 7094-7105. https://doi.org/10.1021/acsnano.6b03238
Dai H, Shen Q, Shao J, Wang W, Gao F, Dong X. (2021). Small Molecular NIR-II Fluorophores for Cancer Phototheranostics. The Innovation. 2. https://doi.org/10.1016/j.xinn.2021.100082
Liu T, Li A, Wang C, Zhou W, Liu S, Guo L. (2018). Interfacial Electron Transfer of Ni2P-NiP2 Polymorphs Inducing Enhanced Electrochemical Properties. Adv Mater. 30, e1803590. https://doi.org/10.1002/adma.201803590
Chao Y, Xu L, Liang C, Feng L, Xu J, Dong Z, Tian L, Yi X, Yang K, Liu Z. (2018). Combined local immunostimulatory radioisotope therapy and systemic immune checkpoint blockade imparts potent antitumour responses. Nat. Biomed. Eng. 2, 611-621. https://doi.org/10.1038/s41551-018-0262-6
Chao Y, Liang C, Tao H, Du Y, Wu D, Dong Z, Jin Q, Chen G, Xu J, Xiao Z, Chen Q, Wang C, Chen J, Liu Z. (2020). Localized cocktail chemoimmunotherapy after in situ gelation to trigger robust systemic antitumor immune responses. Sci. Adv. 6, eaaz4204. https://doi.org/10.1126/sciadv.aaz4204.
Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G. (2017). Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 17, 97-111. https://doi.org/10.1038/nri.2016.107
June CH, O'Connor RS, Kawalekar OU, Ghassemi S, Milone MC. (2018). CAR T cell immunotherapy for human cancer. Science. 359, 1361-1365. https://doi.org/10.1126/science.aar6711
Avanzi MP, Yeku O, Li X, Wijewarnasuriya DP, van Leeuwen DG, Cheung K, Park H, Purdon TJ, Daniyan AF, Spitzer MH, Brentjens RJ. (2018). Engineered Tumor-Targeted T Cells Mediate Enhanced Anti-Tumor Efficacy Both Directly and through Activation of the Endogenous Immune System. Cell Rep. 23, 2130-2141. https://doi.org/10.1016/j.celrep.2018.04.051
Aghajanian H, Kimura T, Rurik JG, Hancock AS, Leibowitz MS, Li L, Scholler J, Monslow J, Lo A, Han W, Wang T, Bedi K, Morley MP, Linares Saldana RA, Bolar NA, McDaid K, Assenmacher CA, Smith CL, Wirth D, June CH, Margulies KB, Jain R, Pure E, Albelda SM, Epstein JA. (2019). Targeting cardiac fibrosis with engineered T cells. Nature. 573, 430-433. https://doi.org/10.1038/s41586-019-1546-z
Weber EW, Maus MV, Mackall CL. (2020). The Emerging Landscape of Immune Cell Therapies. Cell. 181, 46-62. https://doi.org/10.1016/j.cell.2020.03.001
Blackburn SD, Shin H, Haining WN, Zou T, Workman CJ, Polley A, Betts MR, Freeman GJ, Vignali DA, Wherry EJ. (2009). Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat. Immunol. 10, 29-37. https://doi.org/10.1038/ni.1679