Open Access Journal Article

Bimetallic phosphidethe nanoparticles as photo-enhanced nanozymes for synergistic cancer immunotherapy

by Xingru Zhao a,*
Beijing Boao Jing Dian Biotechnology Co., LTD
Author to whom correspondence should be addressed.
CI  2024, 39; 3(3), 39;
Received: 7 January 2024 / Accepted: 17 June 2024 / Published Online: 24 June 2024


Nanozyme with biomimetic enzyme activity has the advantages of good catalytic performance, high stability, and is not easily affected by temperature. However, the application of tumor microenvironment (TME) in the tumor is limited due to its low catalytic activity. Herein, a multifunctional nanozyme based on CuCoP with multivalent metal ions (Cu+/Cu2+ and Co2+/ Co3+) provides an innovative strategy for constructing acid-responsive cancer therapy. CuCoP has excellent photothermal properties (photothermal conversion efficiency of 66.9%) as well as glutathione (GSH) peroxidase activity and high photo-enhanced peroxidase-like (POD) enzyme activity in weak acid TME. CuCoP can consume the overexpressed GSH, thus alleviating the antioxidant capacity of the tumor, and reduces Cu2+/ Co3+ to Cu+/ Co 2+. Subsequently, the generated Cu+/Co2+ will react with endogenous H2O2 to generate cytotoxic hydroxyl radical (•OH), which have high catalytic efficiency in weakly acidic TME. Crucially, the synergistic effect of PTT and the cascade reaction of bimetallic atoms with GSH and H2O2 can effectively reduce antioxidant capacity, inhibit tumors and trigger effective immune cell death (ICD) process, which caused a strong immune response and inhibit tumor recurrence and metastasis. As a novel bimetallic sulfide nanoenzyme triggered by TME, CuCoP has great research value in cancer therapy.

Copyright: © 2024 by Zhao. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) (Creative Commons Attribution 4.0 International License). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Share and Cite

ACS Style
Zhao, X. Bimetallic phosphidethe nanoparticles as photo-enhanced nanozymes for synergistic cancer immunotherapy. Cancer Insight, 2024, 3, 39.
AMA Style
Zhao X. Bimetallic phosphidethe nanoparticles as photo-enhanced nanozymes for synergistic cancer immunotherapy. Cancer Insight; 2024, 3(3):39.
Chicago/Turabian Style
Zhao, Xingru 2024. "Bimetallic phosphidethe nanoparticles as photo-enhanced nanozymes for synergistic cancer immunotherapy" Cancer Insight 3, no.3:39.
APA style
Zhao, X. (2024). Bimetallic phosphidethe nanoparticles as photo-enhanced nanozymes for synergistic cancer immunotherapy. Cancer Insight, 3(3), 39.

Article Metrics

Article Access Statistics


  1. Wang Y, Cai R, Chen C. (2019). The Nano-Bio Interactions of Nanomedicines: Understanding the Biochemical Driving Forces and Redox Reactions. Acc. Chem. Res. 52, 1507-1518.
  2. Xu B, Cui Y, Wang W, Li S, Lyu C, Wang S, Bao W, Wang H, Qin M, Liu Z, Wei W, Liu H. (2020). Immunomodulation-Enhanced Nanozyme-Based Tumor Catalytic Therapy. Adv. Mater. 32, e2003563.
  3. Fan K, Xi J, Fan L, Wang P, Zhu C, Tang Y, Xu X, Liang M, Jiang B, Yan X, Gao L. (2018). In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat. Commun. 9, 1440.
  4. Wang Z, Zhang Y, Ju E, Liu Z, Cao F, Chen Z, Ren J, Qu X. (2018). Biomimetic nanoflowers by self-assembly of nanozymes to induce intracellular oxidative damage against hypoxic tumors. Nat. Commun. 9, 3334.
  5. Zhao Y, Xiao X, Zou M, Ding B, Xiao H, Wang M, Jiang F, Cheng Z, Ma P, Lin J. (2020). Nanozyme-Initiated In Situ Cascade Reactions for Self-Amplified Biocatalytic Immunotherapy. Adv. Mater., e2006363.
  6. Ma B, Wang S, Liu F, Zhang S, Duan J, Li Z, Kong Y, Sang Y, Liu H, Bu W, Li L. (2019). Self-Assembled Copper-Amino Acid Nanoparticles for in Situ Glutathione "AND" H2O2 Sequentially Triggered Chemodynamic Therapy. J. Am. Chem. Soc. 141, 849-857.
  7. Jiang B, Duan D, Gao L, Zhou M, Fan K, Tang Y, Xi J, Bi Y, Tong Z, Gao GF, Xie N, Tang A, Nie G, Liang M, Yan X. (2018). Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 13, 1506-1520.
  8. Wang D, Wang T, Yu H, Feng B, Zhou L, Zhou F, Hou B, Zhang H, Luo M, Li Y. (2019). Engineering nanoparticles to locally activate T cells in the tumor microenvironment. Sci. Immunol. 4.
  9. Qin L, Cao J, Shao K, Tong F, Yang Z, Lei T, Wang Y, Hu C, Umeshappa CS, Gao H, Peppas NA. (2020). A tumor-to-lymph procedure navigated versatile gel system for combinatorial therapy against tumor recurrence and metastasis. Sci. Adv. 6.
  10. Huang Y, Ren J, Qu X. (2019). Nanozymes: Classification, Catalytic Mechanisms, Activity Regulation, and Applications. Chem. Rev. 119, 4357-4412.
  11. Huang L, Chen J, Gan L, Wang J, Dong S. (2019). Single-atom nanozymes. Sci. Adv. 5, eaav5490.
  12. Konduri V, Joseph SK, Byrd TT, Nawas Z, Vazquez-Perez J, Hofferek CJ, Halpert MM, Liu D, Liang Z, Baig Y, Salsman VS, Oyewole-Said D, Tsimelzon A, Burns BA, Chen C, Levitt JM, Yao Q, Ahmed NM, Hegde M, Decker WK. (2021). A subset of cytotoxic effector memory T cells enhances CAR T cell efficacy in a model of pancreatic ductal adenocarcinoma. Sci. Transl. Med. 13.
  13. Moding EJ, Castle KD, Perez BA, Oh P, Min HD, Norris H, Ma Y, Cardona DM, Lee CL, Kirsch DG. (2015). Tumor cells, but not endothelial cells, mediate eradication of primary sarcomas by stereotactic body radiation therapy. Sci. Transl. Med. 7, 278ra234.
  14. Zhou Z, Wu H, Yang R, Xu A, Zhang Q, Dong J, Qian C, Sun M. (2020). GSH depletion liposome adjuvant for augmenting the photothermal immunotherapy of breast cancer. Sci. Adv. 6.
  15. Lin X, Liu S, Zhang X, Zhu R, Chen S, Chen X, Song J, Yang H. (2020). An Ultrasound Activated Vesicle of Janus Au-MnO Nanoparticles for Promoted Tumor Penetration and Sono-Chemodynamic Therapy of Orthotopic Liver Cancer. Angew. Chem., Int. Ed. Engl. 59, 1682-1688.
  16. Ding B, Zheng P, Jiang F, Zhao Y, Wang M, Chang M, Ma P, Lin J. (2020). MnOx Nanospikes as Nanoadjuvants and Immunogenic Cell Death Drugs with Enhanced Antitumor Immunity and Antimetastatic Effect. Angew. Chem., Int. Ed. Engl. 59, 16381-16384.
  17. Yu M, Duan X, Cai Y, Zhang F, Jiang S, Han S, Shen J, Shuai X. (2019). Multifunctional Nanoregulator Reshapes Immune Microenvironment and Enhances Immune Memory for Tumor Immunotherapy. Adv. Sci. (Weinh). 6, 1900037.
  18. Wang D, Wu H, Lim WQ, Phua SZF, Xu P, Chen Q, Guo Z, Zhao Y. (2019). A Mesoporous Nanoenzyme Derived from Metal-Organic Frameworks with Endogenous Oxygen Generation to Alleviate Tumor Hypoxia for Significantly Enhanced Photodynamic Therapy. Adv. Mater. 31, e1901893.
  19. Tian Q, Tang M, Sun Y, Zou R, Chen Z, Zhu M, Yang S, Wang J, Wang J, Hu J. (2011). Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells. Adv. Mater. 23, 3542-3547.
  20. Xu C, Teng Z, Zhang Y, Yuwen L, Zhang Q, Su X, Dang M, Tian Y, Tao J, Bao L, Yang B, Lu G, Zhu J. (2018). Flexible MoS2-Embedded Human Serum Albumin Hollow Nanocapsules with Long Circulation Times and High Targeting Ability for Efficient Tumor Ablation. Advanced Functional Materials. 28.
  21. Wang S, Chen Y, Li X, Gao W, Zhang L, Liu J, Zheng Y, Chen H, Shi J. (2015). Injectable 2D MoS2 -Integrated Drug Delivering Implant for Highly Efficient NIR-Triggered Synergistic Tumor Hyperthermia. Adv Mater. 27, 7117-7122.
  22. Chang M, Wang M, Wang M, Shu M, Ding B, Li C, Pang M, Cui S, Hou Z, Lin J. (2019). A Multifunctional Cascade Bioreactor Based on Hollow-Structured Cu2MoS4 for Synergetic Cancer Chemo-Dynamic Therapy/Starvation Therapy/Phototherapy/Immunotherapy with Remarkably Enhanced Efficacy. Adv. Mater. 31.
  23. Yang F, Hu S, Zhang Y, Cai X, Huang Y, Wang F, Wen S, Teng G, Gu N. (2012). A hydrogen peroxide-responsive O(2) nanogenerator for ultrasound and magnetic-resonance dual modality imaging. Adv. Mater. 24, 5205-5211.
  24. Wang X, Zhao Y, Shi L, Hu Y, Song G, Cai K, Li M, Luo Z. (2021). Tumor-Targeted Disruption of Lactate Transport with Reactivity-Reversible Nanocatalysts to Amplify Oxidative Damage. Small. e2100130.
  25. Chen Y, Li ZH, Pan P, Hu JJ, Cheng SX, Zhang XZ. (2020). Tumor-Microenvironment-Triggered Ion Exchange of a Metal-Organic Framework Hybrid for Multimodal Imaging and Synergistic Therapy of Tumors. Adv. Mater. 32, e2001452.
  26. Li ZH, Chen Y, Sun Y, Zhang XZ. (2021). Platinum-Doped Prussian Blue Nanozymes for Multiwavelength Bioimaging Guided Photothermal Therapy of Tumor and Anti-Inflammation. ACS Nano. 15, 5189-5200.
  27. Pu Z, Liu T, Amiinu IS, Cheng R, Wang P, Zhang C, Ji P, Hu W, Liu J, Mu S. (2020). Transition‐Metal Phosphides: Activity Origin, Energy‐Related Electrocatalysis Applications, and Synthetic Strategies. Adv. Funct. Mater. 30.
  28. Wei XK, Bihlmayer G, Zhou X, Feng W, Kolen'ko YV, Xiong D, Liu L, Blügel S, Dunin-Borkowski RE. (2020). Discovery of Real-Space Topological Ferroelectricity in Metallic Transition Metal Phosphides. Adv. Mater. 32.
  29. Chen D, Pu Z, Lu R, Ji P, Wang P, Zhu J, Lin C, Li HW, Zhou X, Hu Z, Xia F, Wu J, Mu S. (2020). Ultralow Ru Loading Transition Metal Phosphides as High-Efficient Bifunctional Electrocatalyst for a Solar-to-Hydrogen Generation System. Adv. Energy. Mater. 10.1002/aenm.202000814
  30. Lu XF, Yu L, Lou XWD. (2019). Highly crystalline Ni-doped FeP/carbon hollow nanorods as all-pH efficient and durable hydrogen evolving electrocatalysts. Sci. Adv. 5, eaav6009.
  31. Liu Y, Wu J, Jin Y, Zhen W, Wang Y, Liu J, Jin L, Zhang S, Zhao Y, Song S, Yang Y, Zhang H. (2019). Copper(I) Phosphide Nanocrystals for In Situ Self-Generation Magnetic Resonance Imaging-Guided Photothermal-Enhanced Chemodynamic Synergetic Therapy Resisting Deep-Seated Tumor. Adv.Funct. Mater. 29.
  32. Liu Y, Zhen W, Wang Y, Liu J, Jin L, Zhang T, Zhang S, Zhao Y, Song S, Li C, Zhu J, Yang Y, Zhang H. (2019). One-Dimensional Fe2P Acts as a Fenton Agent in Response to NIR II Light and Ultrasound for Deep Tumor Synergetic Theranostics. Angew. Chem., Int. Ed, Engl. 58, 2407-2412.
  33. Liu Y, Zhen W, Wang Y, Liu J, Jin L, Zhang T, Zhang S, Zhao Y, Yin N, Niu R, Song S, Zhang L, Zhang H. (2019). Double Switch Biodegradable Porous Hollow Trinickel Monophosphide Nanospheres for Multimodal Imaging Guided Photothermal Therapy. Nano Lett. 19, 5093-5101.
  34. Li L, Chen C, Liu H, Fu C, Tan L, Wang S, Fu S, Liu X, Meng X, Liu H. (2016). Multifunctional Carbon-Silica Nanocapsules with Gold Core for Synergistic Photothermal and Chemo-Cancer Therapy under the Guidance of Bimodal Imaging. Adv. Funct. Mater. 26, 4252-4261.
  35. Li L, Fu S, Chen C, Wang X, Fu C, Wang S, Guo W, Yu X, Zhang X, Liu Z, Qiu J, Liu H. (2016). Microenvironment-Driven Bioelimination of Magnetoplasmonic Nanoassemblies and Their Multimodal Imaging-Guided Tumor Photothermal Therapy. ACS Nano. 10, 7094-7105.
  36. Dai H, Shen Q, Shao J, Wang W, Gao F, Dong X. (2021). Small Molecular NIR-II Fluorophores for Cancer Phototheranostics. The Innovation. 2.
  37. Liu T, Li A, Wang C, Zhou W, Liu S, Guo L. (2018). Interfacial Electron Transfer of Ni2P-NiP2 Polymorphs Inducing Enhanced Electrochemical Properties. Adv Mater. 30, e1803590.
  38. Chao Y, Xu L, Liang C, Feng L, Xu J, Dong Z, Tian L, Yi X, Yang K, Liu Z. (2018). Combined local immunostimulatory radioisotope therapy and systemic immune checkpoint blockade imparts potent antitumour responses. Nat. Biomed. Eng. 2, 611-621.
  39. Chao Y, Liang C, Tao H, Du Y, Wu D, Dong Z, Jin Q, Chen G, Xu J, Xiao Z, Chen Q, Wang C, Chen J, Liu Z. (2020). Localized cocktail chemoimmunotherapy after in situ gelation to trigger robust systemic antitumor immune responses. Sci. Adv. 6, eaaz4204.
  40. Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G. (2017). Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 17, 97-111.
  41. June CH, O'Connor RS, Kawalekar OU, Ghassemi S, Milone MC. (2018). CAR T cell immunotherapy for human cancer. Science. 359, 1361-1365.
  42. Avanzi MP, Yeku O, Li X, Wijewarnasuriya DP, van Leeuwen DG, Cheung K, Park H, Purdon TJ, Daniyan AF, Spitzer MH, Brentjens RJ. (2018). Engineered Tumor-Targeted T Cells Mediate Enhanced Anti-Tumor Efficacy Both Directly and through Activation of the Endogenous Immune System. Cell Rep. 23, 2130-2141.
  43. Aghajanian H, Kimura T, Rurik JG, Hancock AS, Leibowitz MS, Li L, Scholler J, Monslow J, Lo A, Han W, Wang T, Bedi K, Morley MP, Linares Saldana RA, Bolar NA, McDaid K, Assenmacher CA, Smith CL, Wirth D, June CH, Margulies KB, Jain R, Pure E, Albelda SM, Epstein JA. (2019). Targeting cardiac fibrosis with engineered T cells. Nature. 573, 430-433.
  44. Weber EW, Maus MV, Mackall CL. (2020). The Emerging Landscape of Immune Cell Therapies. Cell. 181, 46-62.
  45. Blackburn SD, Shin H, Haining WN, Zou T, Workman CJ, Polley A, Betts MR, Freeman GJ, Vignali DA, Wherry EJ. (2009). Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat. Immunol. 10, 29-37.