Open Access Review

CRISPR-Cas9 Unleashed: Gene-Slicing Adventures in the Cancer Battlefield

by Shivakumar Sonnaila a  and  Shilpi Agrawal b,* orcid
a
Department of Chemistry and Biochemistry, Fulbright College of Art and Sciences, University of Arkansas, Fayetteville, USA
b
Department of Biomedical Engineering, University of Arkansas, Fayetteville, USA
*
Author to whom correspondence should be addressed.
CI  2024, 33; 2(2), 33; https://doi.org/10.58567/ci02020008
Received: 30 November 2023 / Accepted: 20 December 2023 / Published: 2 January 2024

Abstract

Cancer, a global health menace, continues to pose significant challenges in terms of incidence and mortality, necessitating innovative therapeutic strategies. Despite existing treatments, the limitations persist, prompting a quest for novel approaches. The emergence of immunotherapy marked a transformative era in solid tumor treatments, yet its efficacy is constrained by adverse effects. Concurrently, the integration of advanced technologies into cancer treatment explores the vast potential residing at the molecular level through gene analysis and manipulation. This review articulates the role of state-of-the-art genome editing technology, notably clustered regularly interspaced short palindromic repeats (CRISPR-Cas9), in overcoming the constraints of immunotherapy for cancers. Unveiling the intricacies of CRISPR-Cas9-mediated genome editing, the review introduces the formidable CRISPR toolbox. A spotlight is cast on the transformative impact of CRISPR-induced double-strand breaks (DSBs) on cancer immunotherapy, encompassing knockout and knock-in strategies. The utilization of CRISPR/Cas9 technology in pre-clinical cancer research has demonstrated notable success; however, its transition to the clinical setting remains in the nascent stages of development. This review aims to elucidate the fundamental aspects of CRISPR technology and offer a comprehensive survey of its existing applications while outlining its prospective role in the realm of cancer therapies. Through an exploration of CRISPR's mechanisms, current applications, and anticipated future potentials, this review provides valuable insights into the evolving landscape of CRISPR-based cancer treatment strategies.


Copyright: © 2024 by Sonnaila and Agrawal. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) (Creative Commons Attribution 4.0 International License). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Show Figures

Share and Cite

ACS Style
Sonnaila, S.; Agrawal, S. CRISPR-Cas9 Unleashed: Gene-Slicing Adventures in the Cancer Battlefield. Cancer Insight, 2023, 2, 33. https://doi.org/10.58567/ci02020008
AMA Style
Sonnaila S, Agrawal S. CRISPR-Cas9 Unleashed: Gene-Slicing Adventures in the Cancer Battlefield. Cancer Insight; 2023, 2(2):33. https://doi.org/10.58567/ci02020008
Chicago/Turabian Style
Sonnaila, Shivakumar; Agrawal, Shilpi 2023. "CRISPR-Cas9 Unleashed: Gene-Slicing Adventures in the Cancer Battlefield" Cancer Insight 2, no.2:33. https://doi.org/10.58567/ci02020008
APA style
Sonnaila, S., & Agrawal, S. (2023). CRISPR-Cas9 Unleashed: Gene-Slicing Adventures in the Cancer Battlefield. Cancer Insight, 2(2), 33. https://doi.org/10.58567/ci02020008

Article Metrics

Article Access Statistics

References

  1. Agrawal, S., V. G. Kumar, R. K. Gundampati, M. Moradi & T. K. S. Kumar. (2021a). Characterization of the structural forces governing the reversibility of the thermal unfolding of the human acidic fibroblast growth factor. Scientific Reports 11. https://doi.org/10.1038/s41598-021-95050-2
  2. Agrawal, S., S. Maity, Z. AlRaawi, M. Al-Ameer & T. K. S. Kumar. (2021b). Targeting Drugs Against Fibroblast Growth Factor(s)-Induced Cell Signaling. Current Drug Targets 22, 214-240. https://doi.org/10.2174/1389450121999201012201926
  3. Agrawal, S., M. Reese & C. Nelson. (2023). Overexpression and cell-penetrating peptide-mediated delivery of Cas9 and its variant(s) for targeted genome editing. Biophysical Journal 122, 434A-435A. https://doi.org/10.1016/j.bpj.2022.11.2349
  4. Agrawal, S., A. Bryan & C. E. Nelson. (2023). Standardizing a Protocol for Streamlined Synthesis and Characterization of Lipid Nanoparticle to Enable Preclinical Research and Education. Molecular Therapy 31, 479-480.
  5. Agrawal, S., M. H. Padmaswari & C. Nelson. (2022). Circumventing the Adaptive Immune Response using Lipid Nanoparticles-mRNA for Effective Genome Editing in Skeletal Muscle. Molecular Therapy 30, 491-491.
  6. Akram, F., I. Ul Haq, Z. Ahmed, H. Khan & M. S. Ali. (2020). CRISPR-Cas9, A Promising Therapeutic Tool for Cancer Therapy: A Review. Protein and Peptide Letters 27, 931-944. https://doi.org/10.2174/0929866527666200407112432
  7. Al-Ogaili, A. S., R. Liyanage, J. O. Lay, T. Jiang, C. N. Vuong, S. Agrawal, T. K. S. Kumar, L. R. Berghman, B. M. Hargis & Y. M. Kwon. (2020). DNA aptamer-based rolling circle amplification product as a novel immunological adjuvant. Scientific Reports 10. https://doi.org/10.1038/s41598-020-79420-w
  8. Backstrom, J. R., J. Sheng, M. C. Wang, A. Bernardo-Colon & T. S. Rex. (2020). Optimization of Single AAV CRISPRi. Molecular Therapy 28, 82-82. https://doi.org/10.1038/s41573-019-0012-9
  9. Baghini, S. S., Z. R. Gardanova, S. A. H. Abadi, B. A. Zaman, A. Ilhan, N. Shomali, A. Adili, R. Moghaddar & A. F. Yaseri. (2022). CRISPR/Cas9 application in cancer therapy: a pioneering genome editing tool. Cellular & Molecular Biology Letters 27. https://doi.org/10.1186/s11658-022-00336-6
  10. Barrangou, R., C. Fremaux, H. Deveau, M. Richards, P. Boyaval, S. Moineau, D. A. Romero & P. Horvath. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709-1712. https://doi.org/10.1126/science.1138140
  11. Chen, X., S. Y. Pan, C. C. Wen & X. F. Du. (2020). CRISPR/Cas9 for cancer treatment: technology, clinical applications and challenges. Briefings in Functional Genomics 19, 209-214. https://doi.org/10.1093/bfgp/elaa001
  12. Chen, X.-Z., R. Guo, C. Zhao, J. Xu, H. Song, H. Yu, C. Pilarsky, F. Nainu, J.-Q. Li, X.-K. Zhou & J.-Y. Zhang. (2022). A Novel Anti-Cancer Therapy: CRISPR/Cas9 Gene Editing. Frontiers in Pharmacology 13. https://doi.org/10.3389/fphar.2022.939090
  13. Cheung, A. H.-K., C. Chow, J. Zhang, Y. Zhou, T. Huang, K. C.-K. Ng, T. C.-T. Or, Y. Y. Yao, Y. Dong, J. M.-W. Fung, et al. (2018). Specific targeting of point mutations in <i>EGFR</i> L858R-positive lung cancer by CRISPR/Cas9. Laboratory Investigation 98, 968-976. https://doi.org/10.1038/s41374-018-0056-1
  14. Chu, V. T., T. Weber, B. Wefers, W. Wurst, S. Sander, K. Rajewsky & R. Kühn. (2015). Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nature Biotechnology 33, 543-U160. https://doi.org/10.1038/nbt.3198
  15. Cui, Z. F., H. Liu, H. F. Zhang, Z. Y. Huang, R. Tian, L. F. Li, W. W. Fan, Y. L. Chen, L. J. Chen, S. Zhang, et al. (2021). The comparison of ZFNs, TALENs, and SpCas9 by GUIDE-seq in HPV-targeted gene therapy. Molecular Therapy-Nucleic Acids 26, 1466-1478. https://doi.org/10.1016/j.omtn.2021.08.008
  16. Dai, Z., R. Li, Y. Hou, Q. Li, K. Zhao, T. Li, M. J. Li & X. Wu. (2021). Inducible CRISPRa screen identifies putative enhancers. Journal of Genetics and Genomics 48, 917-927. https://doi.org/10.1016/j.jgg.2021.06.012
  17. Davis, J. E., A. Alghanmi, R. K. Gundampati, S. Jayanthi, E. Fields, M. Armstrong, V. Weidling, V. Shah, S. Agrawal, B. P. Koppolu, D. A. Zaharoff & T. K. S. Kumar. (2018). Probing the role of proline-135 on the structure, stability, and cell proliferation activity of human acidic fibroblast growth factor. Archives of Biochemistry and Biophysics 654, 115-125. https://doi.org/10.1016/j.abb.2018.07.017
  18. Ebright, R. Y., S. Lee, B. S. Wittner, K. L. Niederhoffer, B. T. Nicholson, A. Bardia, S. Truesdell, D. F. Wiley, B. Wesley, S. Li, et al. (2020). Deregulation of ribosomal protein expression and translation promotes breast cancer metastasis. Science 367, 1468-+. https://doi.org/10.1126/science.aay0939
  19. Elumalai, P., S. Y. Kim, S. Shin, S.-H. Jung, S. Min, J. Liu & Y.-J. Chung. (2019). PTEN inactivation induces epithelial-mesenchymal transition and metastasis by intranuclear translocation of β-catenin and snail/slug in non-small cell lung carcinoma cells. Lung Cancer 130, 25-34. https://doi.org/10.1016/j.lungcan.2019.01.013
  20. Faraoni, I. & G. Graziani. (2018). Role of BRCA Mutations in Cancer Treatment with Poly(ADP-ribose) Polymerase (PARP) Inhibitors. Cancers 10. https://doi.org/10.3390/cancers10120487
  21. Foy, S. P. P., K. Jacoby, D. A. A. Bota, T. Hunter, Z. Pan, E. Stawiski, Y. Ma, W. Lu, S. Peng, C. L. L. Wang, et al. (2023). Non-viral precision T cell receptor replacement for personalized cell therapy. Nature Reviews Drug Discovery 22, 18-18. https://doi.org/10.1038/s41586-022-05531-1
  22. Fraietta, J. A., S. F. Lacey, E. J. Orlando, I. Pruteanu-Malinici, M. Gohil, S. Lundh, A. C. Boesteanu, Y. Wang, R. S. O'Connor, W.-T. Hwang, E. Pequignot, et al. (2021). Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia (vol 24, pg 563, 2018). Nature Medicine 27, 561-561. https://doi.org/10.1038/s41591-018-0010-1
  23. Gaj, T., C. A. Gersbach & C. F. Barbas. (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology 31, 397-405. https://doi.org/10.1016/j.tibtech.2013.04.004
  24. Gonzalez, H., C. Hagerling & Z. Werb. (2018). Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes & Development 32, 1267-1284. https://doi.org/10.1101/gad.314617.118
  25. Jang, S., S. Jang & G. Y. Jung. (2018) Toward tunable dynamic repression using CRISPRi. Biotechnology Journal 13. https://doi.org/10.1002/biot.201800152
  26. Jeong, Y. H. a. K. Y. J. a. K. E. Y. a. K. S. E. a. K. J. a. P. M. J. a. L. H. G. a. P. S. P. a. (2016). Knock-in fibroblasts and transgenic blastocysts for expression of human FGF2 in the bovine $\beta$-casein gene locus using CRISPR/Cas9 nuclease-mediated homologous recombination. Zygote, 24(3), 442–456. https://doi.org/10.1017/S0967199415000374
  27. Jia, X., Q. Yao, H. Li & J. Chen. (2020). Crispra: A Promising Tool for β-Thalassemia Treatment. Blood 136. https://doi.org/10.1182/blood-2020-141196
  28. Jiang, F. G. & J. A. Doudna. (2017). CRISPR-Cas9 Structures and Mechanisms. Annual Review of Biophysics, Vol 46 46, 505-529. https://doi.org/10.1146/annurev-biophys-062215-010822
  29. Jin, L.-F. & J.-S. Li. (2016). Generation of genetically modified mice using CRISPR/Cas9 and haploid embryonic stem cell systems. Zoological Research 37, 205-213. https://doi.org/10.13918/j.issn.2095-8137.2016.4.205
  30. Kanter, J., M. C. Walters, L. Krishnamurti, M. Y. Mapara, J. L. Kwiatkowski, S. Rifkin-Zenenberg, B. Aygun, K. A. Kasow, F. J. Pierciey, M. Bonner, et al. (2022). Biologic and Clinical Efficacy of LentiGlobin for Sickle Cell Disease. New England Journal of Medicine 386, 617-628. https://doi.org/10.1056/NEJMoa2117175
  31. Katti, A., B. J. Diaz, C. M. Caragine, N. E. Sanjana & L. E. Dow. (2022). CRISPR in cancer biology and therapy. Nature Reviews Cancer 22, 259-279. https://doi.org/10.1038/s41568-022-00441-w
  32. Kerr, R., S. Agrawal, S. Maity, B. Koppolu, S. Jayanthi, G. S. Kumar, R. K. Gundampati, D. S. McNabb, D. A. Zaharoff & T. K. S. Kumar. (2019). Design of a thrombin resistant human acidic fibroblast growth factor (hFGF1) variant that exhibits enhanced cell proliferation activity. Biochemical and Biophysical Research Communications 518, 191-196. https://doi.org/10.1016/j.bbrc.2019.08.029
  33. Khan, S., M. S. Mahmood, S. U. Rahman, H. Zafar, S. Habibullah, Z. Khan & A. Ahmad. (2018). CRISPR/Cas9: the Jedi against the dark empire of diseases. Journal of Biomedical Science 25. https://doi.org/10.1186/s12929-018-0425-5
  34. Kulishova, L. M., I. P. Vokhtantsev, D. V. Kim & D. O. Zharkov. (2023). Mechanisms of the Specificity of the CRISPR/Cas9 System in Genome Editing. Molecular Biology 57, 258-271. https://doi.org/10.1134/S0026893323020139
  35. Kumar, V. G., A. Polasa, S. Agrawal, T. K. S. Kumar & M. (2022). Moradi Binding affinity estimation from restrained umbrella sampling simulations. Nature Computational Science. https://doi.org/10.1038/s43588-022-00389-9
  36. Liao, Y., L. Chen, Y. Feng, J. Shen, Y. Gao, G. Cote, E. Choy, D. Harmon, H. Mankin, F. Hornicek & Z. Duan. (2017). Targeting programmed cell death ligand 1 by CRISPR/Cas9 in osteosarcoma cells. Oncotarget 8, 30276-30287. https://doi.org/10.18632/oncotarget.16326
  37. Lino, C. A., J. C. Harper, J. P. Carney & J. A. Timlin. (2018). Delivering CRISPR: a review of the challenges and approaches. Drug Delivery 25, 1234-1257. https://doi.org/10.1080/10717544.2018.1474964
  38. Liu, T. Y. & J. A. Doudna. (2020). Chemistry of Class 1 CRISPR-Cas effectors: Binding, editing, and regulation. Journal of Biological Chemistry 295, 14473-14487. https://doi.org/10.1074/jbc.REV120.007034
  39. Lu, Y., J. Xue, T. Deng, X. Zhou, K. Yu, L. Deng, M. Huang, X. Yi, M. Liang, Y. Wang, et al. (2020). Safety and feasibility of CRISPR-edited T cells in patients with refractory non-small-cell lung cancer. Nature Medicine 26, 732-740. https://doi.org/10.1038/s41591-020-0840-5
  40. Malkin, D. (1993). The genetics of cancer. Journal of insurance medicine (New York, N.Y.) Suppl B, 229-36
  41. Marraffini, L. A. (2015). CRISPR-Cas immunity in prokaryotes. Nature 526, 55-61. https://doi.org/10.1038/nature15386
  42. Mohan, S., K. Thiagarajan, B. Sundaramoorthy, V. Gurung, M. Barpande, S. Agarwal & R. Chandrasekaran. (2016). Alleviation of 4-nitroquinoline 1-oxide induced oxidative stress by <i>Oroxylum indicum</i> (L.) leaf extract in albino Wistar rats. Bmc Complementary and Alternative Medicine 16. https://doi.org/10.1186/s12906-016-1186-x
  43. Nishiga, M., L. S. Qi & J. C. Wu. (2021). CRISPRi/a Screening with Human iPSCs. Methods in molecular biology (Clifton, N.J.) 2320, 261-281. https://doi.org/10.1007/978-1-0716-1484-6_23
  44. Onaciu, A., R. Munteanu, V. C. Munteanu, D. Gulei, L. Raduly, R.-I. Feder, R. Pirlog, A. G. Atanasov, S. S. Korban, A. Irimie et al. (2020). Spontaneous and Induced Animal Models for Cancer Research. Diagnostics 10. https://doi.org/10.3390/diagnostics10090660
  45. Padmaswari, M. H., S. Agrawal, M. S. Jia, A. Ivy, D. A. Maxenberger, L. A. Burcham & C. E. Nelson. (2023). Delivery challenges for CRISPR-Cas9 genome editing for Duchenne muscular dystrophy. Biophysics Reviews 4. https://doi.org/10.1063/5.0131452
  46. Phan, P., B. B. Saikia, S. Sonnaila, S. Agrawal, Z. Alraawi, T. K. S. Kumar & S. Iyer. (2021). The Saga of Endocrine FGFs. Cells 10. https://doi.org/10.3390/cells10092418
  47. Psatha, N., A. Reik, S. Phelps, Y. Zhou, D. Dalas, E. Yannaki, D. N. Levasseur, F. D. Urnov, M. C. Holmes & T. Papayannopoulou. (2018). Disruption of the BCL11A Erythroid Enhancer Reactivates Fetal Hemoglobin in Erythroid Cells of Patients with β-Thalassemia Major. Molecular Therapy-Methods & Clinical Development 10, 313-326. https://doi.org/10.1016/j.omtm.2018.08.003
  48. Qu, J., N. K. Prasad, M. A. Yu, S. Chen, A. Lyden, N. Herrera, M. R. Silvis, E. Crawford, M. R. Looney, J. M. Peters et al. (2019). Modulating Pathogenesis with Mobile-CRISPRi. Journal of Bacteriology 201. https://doi.org/10.1128/JB.00304-19
  49. Sakuma, T. (2021). Development of transcriptional activation platforms of cancer-related genes using Class 1 and Class 2 CRISPR systems. Cancer Science 112, 186-186.
  50. Shirai, Y., M.-D. Piulachs, X. Belles & T. Daimon. (2022). DIPA-CRISPR is a simple and accessible method for insect gene editing. Cell Reports Methods 2. https://doi.org/10.1016/j.crmeth.2022.100215
  51. Shmakov, S., O. O. Abudayyeh, K. S. Makarova, Y. I. Wolf, J. S. Gootenberg, E. Semenova, L. Minakhin, J. Joung, S. Konermann, K. Severinov, et al. (2015). Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems. Molecular Cell 60, 385-397. https://doi.org/10.1016/j.molcel.2015.10.008
  52. Shmakov, S., A. Smargon, D. Scott, D. Cox, N. Pyzocha, W. Yan, O. O. Abudayyeh, J. S. Gootenberg, K. S. Makarova, Y. I. Wolf, et al. (2017). Diversity and evolution of class 2 CRISPR-Cas systems. Nature Reviews Microbiology 15, 169-182. https://doi.org/10.1038/nrmicro.2016.184
  53. Shola, D. T. N., C. W. Yang, V. S. Kewaldar, P. Kar & V. Bustos. (2020). New Additions to the CRISPR Toolbox: CRISPR-<i>CLONInG</i> and CRISPR-<i>CLIP</i> for Donor Construction in Genome Editing. Crispr Journal 3, 109-122. https://doi.org/10.1089/crispr.2019.0062
  54. Siegel, R. L., K. D. Miller, H. E. Fuchs & A. Jemal. (2021). Cancer Statistics, 2021. Ca-a Cancer Journal for Clinicians 71, 7-33. https://doi.org/10.3322/caac.21654
  55. Siegel, R. L., K. D. Miller, H. E. Fuchs & A. Jemal. (2022). Cancer statistics, 2022. Ca-a Cancer Journal for Clinician 72, 7-33. https://doi.org/10.3322/caac.21708
  56. Sorkhabi, A. D., L. M. Khosroshahi, A. Sarkesh, A. Mardi, A. Aghebati-Maleki, L. Aghebati-Maleki & B. Baradaran. (2023). The current landscape of CAR T-cell therapy for solid tumors: Mechanisms, research progress, challenges, and counterstrategies. Frontiers in Immunology 14. https://doi.org/10.3389/fimmu.2023.1113882
  57. Stadtmauer, E. A., J. A. Fraietta, M. M. Davis, A. D. Cohen, K. L. Weber, E. Lancaster, P. A. Mangan, I. Kulikovskaya, M. Gupta, F. Chen, et al. (2020). CRISPR-engineered T cells in patients with refractory cancer. Science 367, 1001-+. https://doi.org/10.1126/science.aba7365
  58. Stefanoudakis, D., N. Kathuria-Prakash, A. W. Sun, M. Abel, C. E. Drolen, C. Ashbaugh, S. L. Zhang, G. V. Hui, Y. A. Tabatabaei, Y. Zektser, et al. (2023). The Potential Revolution of Cancer Treatment with CRISPR Technology. Cancers 15. https://doi.org/10.3390/cancers15061813
  59. Tebas, P., D. Stein, W. W. Tang, I. Frank, S. Q. Wang, G. Lee, S. K. Spratt, R. T. Surosky, M. A. Giedlin, G. Nichol, et al. (2014). Gene Editing of CCR5 in Autologous CD4 T Cells of Persons Infected with HIV. New England Journal of Medicine 370, 901-910. https://doi.org/10.1056/NEJMoa1300662
  60. Wagnon, J. L. (2020). Promoting CRISPRa for Targeted Treatment of Epilepsy. Epilepsy Currents 20, 227-229. https://doi.org/10.1177/1535759720935825
  61. Wang, W. a. Z. L. a. W. X. a. Z. Y. (2019). The advances in CRISPR technology and 3D genome. https://doi.org/10.1016/j.semcdb.2018.07.009
  62. Wang, Z., N. Li, K. Feng, M. Chen, Y. Zhang, Y. Liu, Q. Yang, J. Nie, N. Tang, X. Zhang, et al. (2021). Phase I study of CAR-T cells with PD-1 and TCR disruption in mesothelin-positive solid tumors. Cellular & Molecular Immunology 18, 2188-2198. https://doi.org/10.1038/s41423-021-00749-x
  63. Watters, K. E., H. Shivram, C. Fellmann, R. J. Lew, B. McMahon & J. A. Doudna. (2020). Potent CRISPR-Cas9 inhibitors from <i>Staphylococcus</i> genomes. Proceedings of the National Academy of Sciences of the United States of America 117, 6531-6539. https://doi.org/10.1073/pnas.1917668117
  64. Wyld, L., R. A. Audisio & G. J. Poston. (2015). The evolution of cancer surgery and future perspectives. Nature Reviews Clinical Oncology 12, 115-124. https://doi.org/10.1038/nrclinonc.2014.191
  65. Yang, H., S. L. Ren, S. Y. Yu, H. F. Pan, T. D. Li, S. X. Ge, J. Zhang & N. S. Xia. (2020). Methods Favoring Homology-Directed Repair Choice in Response to CRISPR/Cas9 Induced-Double Strand Breaks. International Journal of Molecular Sciences 21. https://doi.org/10.3390/ijms21186461
  66. Yarnall, M. T. N., E. I. Ioannidi, C. Schmitt-Ulms, R. N. Krajeski, J. Lim, L. Villiger, W. Y. Zhou, K. Y. Jiang, S. K. Garushyants, et al. (2023). Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases. Nature Biotechnology 41, 500-512. https://doi.org/10.1038/s41587-022-01527-4
  67. Yau, E. H., I. R. Kummetha, G. Lichinchi, R. Tang, Y. Zhang & T. M. Rana (2017). Genome-Wide CRISPR Screen for Essential Cell Growth Mediators in Mutant KRAS Colorectal Cancers. Cancer Research 77, 6330-6339. https://doi.org/10.1158/0008-5472.CAN-17-2043
  68. Zhang, Q. & Y. Ye. (2017). Not all predicted CRISPR-Cas systems are equal: isolated <i>cas</i> genes and classes of CRISPR like elements. Bmc Bioinformatics 18. https://doi.org/10.1186/s12859-017-1512-4
  69. Zhang, S., F. Zhang, Q. Chen, C. Wan, J. Xiong & J. Xu. (2019). CRISPR/Cas9-mediated knockout of NSD1 suppresses the hepatocellular carcinoma development via the NSD1/H3/Wnt10b signaling pathway. Journal of Experimental & Clinical Cancer Research 38. https://doi.org/10.1186/s13046-019-1462-y
  70. Zhu, Y. L., S. Yin & Z. Li. (2023). Mechanism of inhibition of CRISPR-Cas9 by anti-CRISPR protein AcrIIC1. Bioc 654, 34-39. https://doi.org/10.1016/j.bbrc.2023.02.065