Open Access Review

Cell membrane-coated nanoparticles for cancer therapy

by Yasir Hameed a,1 orcid Mohsen Nabi-Afjadi b,1 orcid Yuan Gu c,* orcid  and  Long Wu d,* orcid
a
Department of Applied Biological Sciences, Tokyo University of Science, Tokyo, Japan
b
Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
c
The Statistics Department, The George Washington University, Washington, United States
d
Department of Surgery, University of Maryland, Baltimore, United States
*
Author to whom correspondence should be addressed.
CI  2023, 23; 2(2), 23; https://doi.org/10.58567/ci02020007
Received: 15 June 2023 / Accepted: 28 June 2023 / Published Online: 29 June 2023

Abstract

Despite the advantages of nanoscale drug delivery systems, traditional nanoparticles often encounter challenges such as detection and elimination by the immune system. To circumvent these limitations, scientists have created biomimetic nanoparticles that extend circulation time, decrease clearance rates, and optimize drug delivery. The integration of cell membranes onto nanoparticle surfaces yields Cell Membrane-coated Nanoparticles (CMNPs) that exhibit behavior akin to actual cells while offering superior structural robustness and stability. A variety of cell membranes, including those of red blood cells, white blood cells, and cancer cells, lend unique properties and targeting capabilities to CMNPs. This review outlines the diagnostic and therapeutic roles of CMNP-based drug delivery systems in oncology and contemplates their possible clinical impact.


Copyright: © 2023 by Hameed, Nabi-Afjadi, Gu and Wu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) (Creative Commons Attribution 4.0 International License). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Show Figures

Share and Cite

ACS Style
Hameed, Y.; Nabi-Afjadi, M.; Gu, Y.; Wu, L. Cell membrane-coated nanoparticles for cancer therapy. Cancer Insight, 2023, 2, 23. https://doi.org/10.58567/ci02020007
AMA Style
Hameed Y, Nabi-Afjadi M, Gu Y, Wu L. Cell membrane-coated nanoparticles for cancer therapy. Cancer Insight; 2023, 2(2):23. https://doi.org/10.58567/ci02020007
Chicago/Turabian Style
Hameed, Yasir; Nabi-Afjadi, Mohsen; Gu, Yuan; Wu, Long 2023. "Cell membrane-coated nanoparticles for cancer therapy" Cancer Insight 2, no.2:23. https://doi.org/10.58567/ci02020007
APA style
Hameed, Y., Nabi-Afjadi, M., Gu, Y., & Wu, L. (2023). Cell membrane-coated nanoparticles for cancer therapy. Cancer Insight, 2(2), 23. https://doi.org/10.58567/ci02020007

Article Metrics

Article Access Statistics

References

  1. Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin . 2021;71(3):209-249. doi:10.3322/caac.21660
  2. Saez-Rodriguez J,MacNamara A, Cook S. Modeling Signaling Networks to Advance New Cancer Therapies. Annu Rev Biomed Eng .2015;17:143-163. doi:10.1146/annurev-bioeng-071813-104927
  3. Marusyk A, Almendro V, Polyak K. Intra-tumour heterogeneity: alooking glass for cancer? Nat Rev Cancer . 2012;12(5):323-334. doi:10.1038/nrc3261
  4. Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol .2015;33(9):941-951. doi:10.1038/nbt.3330
  5. Wilhelm S, Tavares AJ, Dai Q, et al. Analysis of nanoparticle delivery to tumours. Nat Rev Mater . 2016;1(5):1-12. doi:10.1038/natrevmats.2016.14
  6. Kobsa S, Saltzman WM. Bioengineering Approaches to Controlled Protein Delivery. Pediatr Res .
  7. Wang AZ, Langer R, Farokhzad OC. Nanoparticle delivery of cancer drugs. Annu Rev Med .2012;63:185-198. doi:10.1146/annurev-med-040210-162544
  8. Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA. The golden age: gold nanoparticles for biomedicine. Chem Soc Rev .2012;41(7):2740-2779. doi:10.1039/c1cs15237h
  9. Xie J,Lee S, Chen X. Nanoparticle-based theranostic agents. Adv Drug Deliv Rev .2010;62(11):1064-1079. doi:10.1016/j.addr.2010.07.009
  10. Kievit FM, Zhang M. Cancer nanotheranostics: improving imaging and therapy by targeted delivery across biological barriers. Adv Mater Deerfield Beach Fla .2011;23(36):H217-247. doi:10.1002/adma.201102313
  11. Rizzo LY, Theek B, Storm G, Kiessling F,Lammers T.Recent progress in nanomedicine: therapeutic, diagnostic and theranostic applications. Curr Opin Biotechnol . 2013;24(6):1159-1166. doi:10.1016/j.copbio.2013.02.020
  12. Tassa C, Shaw SY, Weissleder R. Dextran-coated iron oxide nanoparticles: aversatile platform for targeted molecular imaging, molecular diagnostics, and therapy. Acc Chem Res . 2011;44(10):842-852. doi:10.1021/ar200084x
  13. Klibanov AL, Maruyama K, Torchilin VP, Huang L. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett .1990;268(1):235-237. doi:10.1016/0014-5793(90)81016-h
  14. Lee DE, Koo H, Sun IC, Ryu JH, Kim K, Kwon IC. Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem Soc Rev .2012;41(7):2656-2672. doi:10.1039/c2cs15261d
  15. Cheng L, Wang C, Feng L, Yang K, Liu Z. Functional nanomaterials for phototherapies of cancer. Chem Rev . 2014;114(21):10869-10939. doi:10.1021/cr400532z
  16. Kim DH, Vitol EA, Liu J,et al. Stimuli-responsive magnetic nanomicelles as multifunctional heat and cargo delivery vehicles. Langmuir ACS JSurf Colloids .2013;29(24):7425-7432. doi:10.1021/la3044158
  17. Chen H, Zhang W, Zhu G, Xie J,Chen X. Rethinking cancer nanotheranostics. Nat Rev Mater .2017;2:17024. doi:10.1038/natrevmats.2017.24
  18. Lammers T,Kiessling F,Ashford M, Hennink W, Crommelin D, Storm G. Cancer nanomedicine: Is targeting our target? Nat Rev Mater .2016;1(9):16069. doi:10.1038/natrevmats.2016.69
  19. Yang Q, Lai SK. Anti-PEG immunity: emergence, characteristics, and unaddressed questions. Wiley Interdiscip Rev Nanomed Nanobiotechnol .2015;7(5):655-677. doi:10.1002/wnan.1339
  20. Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov . 2005;4(2):145-160. doi:10.1038/nrd1632
  21. Fang RH, Jiang Y, Fang JC, Zhang L. Cell membrane-derived nanomaterials for biomedical applications. Biomaterials .2017;128:69-83. doi:10.1016/j.biomaterials.2017.02.041
  22. Zhang L, Wu S, Qin Y,et al. Targeted Codelivery of an Antigen and Dual Agonists by Hybrid Nanoparticles for Enhanced Cancer Immunotherapy. Nano Lett .2019;19(7):4237-4249. doi:10.1021/acs.nanolett.9b00030
  23. Luk BT, Zhang L. Cell membrane-camouflaged nanoparticles for drug delivery. JControl Release Off JControl Release Soc .2015;220(Pt B):600-607. doi:10.1016/j.jconrel.2015.07.019
  24. Hu CMJ, Fang RH, Zhang L. Erythrocyte-inspired delivery systems. Adv Healthc Mater .2012;1(5):537-547. doi:10.1002/adhm.201200138
  25. Hu CMJ, Zhang L, Aryal S, Cheung C, Fang RH, Zhang L. Erythrocyte membrane-camouflaged polymeric nanoparticles as abiomimetic delivery platform. Proc Natl Acad Sci U SA.2011;108(27):10980-10985. doi:10.1073/pnas.1106634108
  26. Yang Z, Gao D, Guo X, et al. Fighting Immune Cold and Reprogramming Immunosuppressive Tumor Microenvironment with Red Blood Cell Membrane-Camouflaged Nanobullets. ACS Nano .
  27. Fang RH, Hu CMJ, Chen KNH, et al. Lipid-insertion enables targeting functionalization of erythrocyte membrane-cloaked nanoparticles. Nanoscale .2013;5(19):8884-8888. doi:10.1039/c3nr03064d
  28. Zhao H, Wu L, Yan G, et al. Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct Target Ther .2021;6(1):263. doi:10.1038/s41392-021-00658-5
  29. Parodi A, Quattrocchi N, van de Ven AL, et al. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat Nanotechnol . 2013;8(1):61-68. doi:10.1038/nnano.2012.212
  30. Molinaro R, Corbo C, Martinez JO, et al. Biomimetic proteolipid vesicles for targeting inflamed tissues. Nat Mater .2016;15(9):1037-1046. doi:10.1038/nmat4644
  31. Kang T, Zhu Q, Wei D, et al. Nanoparticles Coated with Neutrophil Membranes Can Effectively Treat Cancer Metastasis. ACS Nano .2017;11(2):1397-1411. doi:10.1021/acsnano.6b06477
  32. Meng Z, Zhang Y, Zhou X, JiJ,Liu Z. Nanovaccines with cell-derived components for cancer immunotherapy. Adv Drug Deliv Rev .2022;182:114107. doi:10.1016/j.addr.2021.114107
  33. Xue J,Zhao Z, Zhang L, et al. Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence. Nat Nanotechnol .2017;12(7):692-700. doi:10.1038/nnano.2017.54
  34. Zhang L, Li R, Chen H, et al. Human cytotoxic T-lymphocyte membrane-camouflaged nanoparticles combined with low-dose irradiation: anew approach to enhance drug targeting in gastric cancer. Int JNanomedicine . 2017;12:2129-2142. doi:10.2147/IJN.S126016
  35. Kallert SM, Darbre S, Bonilla WV, et al. Replicating viral vector platform exploits alarmin signals for potent CD8+ Tcell-mediated tumour immunotherapy. Nat Commun .2017;8:15327. doi:10.1038/ncomms15327
  36. Deng G, Sun Z, Li S, et al. Cell-Membrane Immunotherapy Based on Natural Killer Cell Membrane Coated Nanoparticles for the Effective Inhibition of Primary and Abscopal Tumor Growth. ACS Nano . 2018;12(12):12096-12108. doi:10.1021/acsnano.8b05292
  37. Harris JC, Scully MA, Day ES. Cancer Cell Membrane-Coated Nanoparticles for Cancer Management. Cancers . 2019;11(12):1836. doi:10.3390/cancers11121836
  38. Liu X, Sun Y, Xu S, et al. Homotypic Cell Membrane-Cloaked Biomimetic Nanocarrier for the Targeted Chemotherapy of Hepatocellular Carcinoma. Theranostics .2019;9(20):5828-5838. doi:10.7150/thno.34837
  39. Liu CM, Chen GB, Chen HH, et al. Cancer cell membrane-cloaked mesoporous silica nanoparticles with a pH-sensitive gatekeeper for cancer treatment. Colloids Surf B Biointerfaces . 2019;175:477-486. doi:10.1016/j.colsurfb.2018.12.038
  40. Wang H, Wang K, He L, Liu Y,Dong H, Li Y.Engineering antigen as photosensitiser nanocarrier to facilitate ROS triggered immune cascade for photodynamic immunotherapy. Biomaterials . 2020;244:119964. doi:10.1016/j.biomaterials.2020.119964
  41. Kroll AV, Fang RH, Jiang Y, et al. Nanoparticulate Delivery of Cancer Cell Membrane Elicits Multiantigenic Antitumor Immunity. Adv Mater Deerfield Beach Fla .2017;29(47). doi:10.1002/adma.201703969
  42. Dehaini D, Wei X, Fang RH, et al. Erythrocyte-Platelet Hybrid Membrane Coating for Enhanced Nanoparticle Functionalization. Adv Mater Deerfield Beach Fla .2017;29(16). doi:10.1002/adma.201606209
  43. Wang D, Dong H, Li M, et al. Erythrocyte-Cancer Hybrid Membrane Camouflaged Hollow Copper Sulfide Nanoparticles for Prolonged Circulation Life and Homotypic-Targeting Photothermal/Chemotherapy of Melanoma. ACS Nano .2018;12(6):5241-5252. doi:10.1021/acsnano.7b08355
  44. Chen HY, Deng J,Wang Y,Wu CQ, Li X, Dai HW. Hybrid cell membrane-coated nanoparticles: Amultifunctional biomimetic platform for cancer diagnosis and therapy. Acta Biomater . 2020;112:1-13. doi:10.1016/j.actbio.2020.05.028
  45. Wu HH, Zhou Y, Tabata Y, Gao JQ. Mesenchymal stem cell-based drug delivery strategy: from cells to biomimetic. JControl Release Off JControl Release Soc .2019;294:102-113. doi:10.1016/j.jconrel.2018.12.019
  46. Zhang M, Cheng S,Jin Y,Zhang N, Wang Y.Membrane engineering of cell membrane biomimetic nanoparticles for nanoscale therapeutics. Clin Transl Med .2021;11(2):e292. doi:10.1002/ctm2.292
  47. Mu X, Li J, Yan S, et al. siRNA Delivery with Stem Cell Membrane-Coated Magnetic Nanoparticles for Imaging-Guided Photothermal Therapy and Gene Therapy. ACS Biomater Sci Eng .2018;4(11):3895-3905. doi:10.1021/acsbiomaterials.8b00858
  48. Tran PHL, Xiang D, Tran TTD, et al. Exosomes and Nanoengineering: AMatch Made for Precision Therapeutics. Adv Mater Deerfield Beach Fla .2020;32(18):e1904040. doi:10.1002/adma.201904040
  49. Yong T,Zhang X, Bie N, et al. Tumor exosome-based nanoparticles are efficient drug carriers for chemotherapy. Nat Commun .2019;10(1):3838. doi:10.1038/s41467-019-11718-4
  50. Ren X, Zheng R, Fang X, et al. Red blood cell membrane camouflaged magnetic nanoclusters for imaging-guided photothermal therapy. Biomaterials .2016;92:13-24. doi:10.1016/j.biomaterials.2016.03.026
  51. Rao L, Xu JH, Cai B, et al. Synthetic nanoparticles camouflaged with biomimetic erythrocyte membranes for reduced reticuloendothelial system uptake. Nanotechnology . 2016;27(8):085106. doi:10.1088/0957-4484/27/8/085106
  52. Rao L, Bu LL, Cai B, et al. Cancer Cell Membrane-Coated Upconversion Nanoprobes for Highly Specific Tumor Imaging. Adv Mater .2016;28(18):3460-3466. doi:10.1002/adma.201506086
  53. Chen Z, Zhao P, Luo Z, et al. Cancer Cell Membrane –Biomimetic Nanoparticles for Homologous-Targeting Dual-Modal Imaging and Photothermal Therapy. ACS Nano . 2016;10(11):10049-10057. doi:10.1021/acsnano.6b04695
  54. Chen X, Lee D, Yu S, et al. In vivo near-infrared imaging and phototherapy of tumors using acathepsin B-activated fluorescent probe. Biomaterials .2017;122:130-140. doi:10.1016/j.biomaterials.2017.01.020
  55. Vijayan V, Uthaman S, Park IK. Cell Membrane-Camouflaged Nanoparticles: APromising Biomimetic Strategy for Cancer Theragnostics. Polymers .2018;10(9):983. doi:10.3390/polym10090983
  56. Meng QF, Rao L, Zan M, et al. Macrophage membrane-coated iron oxide nanoparticles for enhanced photothermal tumor therapy. Nanotechnology .2018;29(13):134004. doi:10.1088/1361-6528/aaa7c7
  57. Feng L, Tao D, Dong Z, et al. Near-infrared light activation of quenched liposomal Ce6 for synergistic cancer phototherapy with effective skin protection. Biomaterials . 2017;127:13-24. doi:10.1016/j.biomaterials.2016.11.027
  58. Ding H, Lv Y, Ni D, et al. Erythrocyte membrane-coated NIR-triggered biomimetic nanovectors with programmed delivery for photodynamic therapy of cancer. Nanoscale . 2015;7(21):9806-9815. doi:10.1039/C5NR02470F
  59. Gao C, Lin Z, Wu Z, Lin X, He Q. Stem-Cell-Membrane Camouflaging on Near-Infrared Photoactivated Upconversion Nanoarchitectures for in Vivo Remote-Controlled Photodynamic Therapy. ACS Appl Mater Interfaces .2016;8(50):34252-34260. doi:10.1021/acsami.6b12865
  60. Qiu WX, Zhang MK, Liu LH, et al. A self-delivery membrane system for enhanced anti-tumor therapy. Biomaterials .2018;161:81-94. doi:10.1016/j.biomaterials.2018.01.037
  61. Yang J,Teng Y,Fu Y,Zhang C. Chlorins e6 loaded silica nanoparticles coated with gastric cancer cell membrane for tumor specific photodynamic therapy of gastric cancer. Int JNanomedicine .2019;14:5061-5071. doi:10.2147/IJN.S202910
  62. Shi J,Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer .2017;17(1):20-37. doi:10.1038/nrc.2016.108
  63. Wang YF, Liu L, Xue X, Liang XJ. Nanoparticle-based drug delivery systems: What can they really do in vivo ?
  64. Xu L, Wu S, Wang J.Cancer cell membrane –coated nanocarriers for homologous target inhibiting the growth of hepatocellular carcinoma. JBioact Compat Polym .2019;34(1):58-71. doi:10.1177/0883911518819107
  65. Aryal S, Hu CMJ, Fang RH, et al. Erythrocyte membrane-cloaked polymeric nanoparticles for controlled drug loading and release. Nanomed .2013;8(8):1271-1280. doi:10.2217/nnm.12.153
  66. Li S, Feng X, Wang J, et al. Polymer nanoparticles as adjuvants in cancer immunotherapy. Nano Res . 2018;11(11):5769-5786. doi:10.1007/s12274-018-2124-7
  67. Qian H, Liu B, Jiang X. Application of nanomaterials in cancer immunotherapy. Mater Today Chem . 2018;7:53-64. doi:10.1016/j.mtchem.2018.01.001
  68. Chen Q, Xu L, Liang C, Wang C, Peng R, Liu Z. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat Commun .2016;7(1):13193. doi:10.1038/ncomms13193
  69. Rao L, Meng QF, Huang Q, et al. Platelet –Leukocyte Hybrid Membrane-Coated Immunomagnetic Beads for Highly Efficient and Highly Specific Isolation of Circulating Tumor Cells. Adv Funct Mater . 2018;28(34):1803531. doi:10.1002/adfm.201803531
  70. Kang T, Zhu Q, Wei D, et al. Nanoparticles Coated with Neutrophil Membranes Can Effectively Treat Cancer Metastasis. ACS Nano .2017;11(2):1397-1411. doi:10.1021/acsnano.6b06477
  71. Yang R, Xu J,Xu L, et al. Cancer Cell Membrane-Coated Adjuvant Nanoparticles with Mannose Modification for Effective Anticancer Vaccination. ACS Nano .2018;12(6):5121-5129. doi:10.1021/acsnano.7b09041
  72. Liang X, Ye X, Wang C, et al. Photothermal cancer immunotherapy by erythrocyte membrane-coated black phosphorus formulation. JControlled Release .2019;296:150-161. doi:10.1016/j.jconrel.2019.01.027
  73. Wang C, Xu L, Liang C, Xiang J,Peng R, Liu Z. Immunological Responses Triggered by Photothermal Therapy with Carbon Nanotubes in Combination with Anti-CTLA-4 Therapy to Inhibit Cancer Metastasis. Adv Mater . 2014;26(48):8154-8162. doi:10.1002/adma.201402996
  74. Cai J, Wang H, Wang D, Li Y. Improving Cancer Vaccine Efficiency by Nanomedicine. Adv Biosyst . 2019;3(3):1800287. doi:10.1002/adbi.201800287
  75. Lopes A, Vandermeulen G, Pr éat V. Cancer DNA vaccines: current preclinical and clinical developments and future perspectives. JExp Clin Cancer Res .2019;38(1):146. doi:10.1186/s13046-019-1154-7
  76. Huang ZH, Shi L, Ma JW, et al. aTotally Synthetic, Self-Assembling, Adjuvant-Free MUC1 Glycopeptide Vaccine for Cancer Therapy. JAm Chem Soc .2012;134(21):8730-8733. doi:10.1021/ja211725s
  77. Shen N, Wu J,Yang C, et al. Combretastatin A4 Nanoparticles Combined with Hypoxia-Sensitive Imiquimod: A New Paradigm for the Modulation of Host Immunological Responses during Cancer Treatment. Nano Lett . 2019;19(11):8021-8031. doi:10.1021/acs.nanolett.9b03214
  78. Zhang R, Billingsley MM, Mitchell MJ. Biomaterials for vaccine-based cancer immunotherapy. JControlled Release .2018;292:256-276. doi:10.1016/j.jconrel.2018.10.008
  79. Ganguly D, Haak S, Sisirak V, Reizis B. The role of dendritic cells in autoimmunity. Nat Rev Immunol . 2013;13(8):566-577. doi:10.1038/nri3477
  80. Oth T, Vanderlocht J,Van Elssen CHMJ, Bos GMJ, Germeraad WTV. Pathogen-Associated Molecular Patterns Induced Crosstalk between Dendritic Cells, T Helper Cells, and Natural Killer Helper Cells Can Improve Dendritic Cell Vaccination. Mediators Inflamm .2016;2016:e5740373. doi:10.1155/2016/5740373
  81. Kroll AV, Fang RH, Jiang Y, et al. Nanoparticulate Delivery of Cancer Cell Membrane Elicits Multiantigenic Antitumor Immunity. Adv Mater Deerfield Beach Fla .2017;29(47). doi:10.1002/adma.201703969
  82. Jiang Y, Krishnan N, Zhou J,et al. Engineered Cell-Membrane-Coated Nanoparticles Directly Present Tumor Antigens to Promote Anticancer Immunity. Adv Mater Deerfield Beach Fla .2020;32(30):e2001808.