Open Access Journal Article

Manufacturing Cost Estimation Using Piecewise Function Approaches

by Eren Sakinc a  and  Alice E. Smith b,* orcid
Bayer Pharmaceuticals, New Jersey, USA
Department of Industrial and Systems Engineering, Auburn University, Auburn, USA
Author to whom correspondence should be addressed.
Received: 8 April 2023 / Accepted: 20 May 2023 / Published: 22 June 2023


This paper describes two novel approaches to cost estimation of manufactured products where a data set of similar products have known manufactured costs. The methods use the notion of piecewise functions and are (1) clustering and (2) splines. Cost drivers are typically a mixture of categorical and numeric data which complicates cost estimation. Both clustering and splines approaches can accommodate this. Through four case studies, we compare our approaches with the often-used regression models. Our results show that clustering especially offers promise in improving the accuracy of cost estimation. While clustering and splines are slightly more complex to develop from both a user and a computational perspective, our approaches are packaged in an open-source software. This paper is the first known to adapt and apply these two well-known mathematical approaches to manufacturing cost estimation.

Copyright: © 2023 by Sakinc and E. Smith. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) (Creative Commons Attribution 4.0 International License). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Show Figures

Share and Cite

ACS Style
Sakinc, E.; E. Smith, A. Manufacturing Cost Estimation Using Piecewise Function Approaches. Journal of Economic Analysis, 2023, 2, 40.
AMA Style
Sakinc E, E. Smith A. Manufacturing Cost Estimation Using Piecewise Function Approaches. Journal of Economic Analysis; 2023, 2(3):40.
Chicago/Turabian Style
Sakinc, Eren; E. Smith, Alice 2023. "Manufacturing Cost Estimation Using Piecewise Function Approaches" Journal of Economic Analysis 2, no.3: 40.
APA style
Sakinc, E., & E. Smith, A. (2023). Manufacturing Cost Estimation Using Piecewise Function Approaches. Journal of Economic Analysis, 2(3), 40.

Article Metrics

Article Access Statistics


  1. Almond, D., Chay, K. Y., & Lee, D. S. (2005). The cost of low birth weight. The Quarterly Journal of Economics 120(3), 1031-1084.
  2. Al-Sultan, K. S. (1995). A tabu search approach to the clustering problem. Pattern Recognition 28(9), 1443-1451.
  3. Angelis, L. & Stamelos, I. (2000). A simulation tool for efficient analogy based cost estimation. Empirical Software Engineering 5(1), 35-68.
  4. Audet, C., Le Digabel, S. & Tribes, C. (2009). NOMAD user guide. Les cahiers du GERAD, Technical Report G-2009-37.
  5. Baker, F. B. & Hubert, L. J. (1975). Measuring the power of hierarchical cluster analysis. Journal of the American Statistical Association 70(349), 31-38.
  6. Carides, G. W., Heyse, J. F. & Iglewicz, B. (2000). A regression-based method for estimating mean treatment cost in presence of right-censoring. Biostatistics 1(3), 299-313.
  7. Chang, W. (2016). Package 'shiny': Web application framework for R, R Package version 0.13.2. Retrieved from
  8. Cheng, C.-H. (1995). A branch and bound clustering algorithm. IEEE Transactions on Systems, Man and Cybernetics 25(5), 895-898.
  9. Curry, H. B. & Schoenberg, I. J. (1947). On spline distributions and their limits: The Polya distribution functions. Bulletin of the American Mathematical Society 53, no. 1114.
  10. Dai, J. S., Niazi, A., Balabani, S. & Seneviratne, L. (2006). Product cost estimation: Technique classification and methodology review. Journal of Manufacturing Science and Engineering 128(2), 563-575.
  11. Dalrymple-Alford, E. C. (1970). Measurement of clustering in free recall. Psychological Bulletin 74(1), 32-34.
  12. de Boor, C. (1976). A Practical Guide to Splines. New York: Springer-Verlag.
  13. Dunn, J. C. (1973). A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. Journal of Cybernetics 3(3), 32-57.
  14. Eilers, P. H. C. & Marx, B. D. (1996). Flexible smoothing with B-splines and penalties. Statistical Science 11(2), 89-102.
  15. Everitt, B. S., Landau, S., Leese, M., & Stahl, D. (2010). Cluster Analysis. Chichester: John Wiley & Sons.
  16. Goodman, L. A., & Kruskal, W. H. (1954). Measures of association for cross classifications. Journal of the American Statistical Association 49(268), 732-764.
  17. Gower, J. C. (1971). A general coefficient of similarity and some of its properties. Biometrics 27(4), 857-871.
  18. Huang, Z. (1997). Clustering large data sets with mixed numeric and categorical values. Proceedings of the 1st Pacific-Asia Conference on Knowledge Discovery and Data Mining Conference, 21-34.
  19. Huang, Z. (1998). Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Mining and Knowledge Discovery 2(3), 283-304.
  20. Jones, D. R., & Beltramo, M. A. (1991). Solving partitioning problems with genetic algorithms. Proceedings of the Fourth International Conference on Genetic Algorithms, 442-449.
  21. Kaufmann, L., & Rousseeuw, P. (1987). Clustering by means of medoids. In Statistical Data Analysis Based on the L1-norm and Related Methods, 405-416. Amsterdam: Springer.
  22. Kaufmann, L., & Rousseeuw, P. J. (1990). Finding Groups in Data. New York: John Wiley & Sons.
  23. Koontz, W. L. G., Narendra, P. M., & Fukunaga, K. (1975). A branch and bound clustering algorithm. IEEE Transactions on Computers 24(9), 908-915.
  24. Layer, A., Brinke, E.T., Houten, F.V., Kals, H., & Haasis, S. (2002). Recent and future trends in cost estimation. International Journal of Computer Integrated Manufacturing, 15(6), 499-510.
  25. Lee, A., Cheng, C.H., & Balakrishnan, J. (1998). Software development cost estimation: integrating neural network with cluster analysis. Information & Management, 34(1), 1-9.
  26. Li, Q., & Racine, J.S. (2007). Nonparametric Econometrics: Theory and Practice. Princeton University Press.
  27. Ma, S., Racine, J.S., & Yang, L. (2014). Spline regression in the presence of categorical design predictors. Journal of Applied Econometrics, 10(5), 705-717.
  28. MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. Proceedings of Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1, 281-297.
  29. Michaud, K., Messer, J., Choi, H.K., & Wolfe, F. (2003). Direct medical costs and their predictors in patients with rheumatoid arthritis. Arthritis and Rheumatism, 48(10), 2750-2762.
  30. Milligan, G.W., & Cooper, M.C. (1985). An examination of procedures for determining the number of clusters in a data set. Psychometrika, 50(2), 159-179.
  31. Monmarché, N., Slimane, M., & Venturini, G. (1999). On improving clustering in numerical databases with artificial ants. In Advances in Artificial Life (pp. 626-635). Springer.
  32. Nie, Z., & Racine, J.S. (2012). The crs package: Nonparametric regression splines for continuous and categorical predictors. The R Journal, 4.2, 48-56.
  33. Omran, M., Salman, A., & Engelbrecht, A.P. (2002). Image classification using particle swarm optimization. Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and Learning, 370-374.
  34. Pahariya, J.S., Ravi, V., & Carr, M. (2009). Software cost estimation using computational intelligence techniques. World Congress on Nature and Biologically Inspired Computing, 849-854 .
  35. Pal, N.R., Bezdek, J.C., & Tsao, E.C.-K. (1993). Generalized clustering networks and Kohonen's self-organizing scheme. IEEE Transactions on Neural Networks, 4(4), 549-557.
  36. Racine, J.S., Nie, Z., & Ripley, B.D. (2014). Package 'crs': Categorical regression splines. R Package version 0.15-24. Retrieved from
  37. Rousseeuw, P.J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53-65.
  38. SAS/STAT 9.2 User's Guide. (2008). SAS Institute Inc.
  39. Schumaker, L.L. (2007). Spline Functions: Basic Theory. Cambridge University Press.
  40. Selim, S.Z., & Al-Sultan, K.S. (1991). A simulated annealing algorithm for the clustering problem. Pattern Recognition, 24(10), 1003-1008.
  41. Sneath, P.H.A. (1957). The application of computers to taxonomy. Microbiology, 17(1), 201-226.
  42. Sokal, R.R., & Michener, C.D. (1958). A statistical method for evaluating systematic relationships. University of Kansas Scientific Bulletin, 38, 1409-1438.
  43. Sørenson, T. (1948). A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons. Biologiske Skrifter, 5, 1-34.
  44. Valverde, S.C., & Humphrey, D.B. (2004). Predicted and actual costs from individual bank mergers. Journal of Economics and Business, 56, 137-157.
  45. Van Hai, V., Nhung, H.L.T.K., Prokopova, Z., Silhavy, R., & Silhavy, P. (2022). Toward improving the efficiency of software development effort estimation via clustering analysis. IEEE Access, 10, 83249-83264. .
  46. Ward Jr, J.H. (1996). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58(301), 236-244.
  47. Wolfe, J.H. (1970). Pattern clustering by multivariate mixture analysis. Multivariate Behavioral Research, 5(3), 329-350.
  48. Xu, Z., & Khoshgoftaar, T.M. (2004). Identification of fuzzy models of software cost estimation. Fuzzy Sets and Systems, 145(1), 141-163.
  49. Zahn, C.T. (1971). Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Transactions on Computers, 100(1), 68-86. doi: 10.1109/T-C.1971.223083