Journal Browser
Journal Insights

Frequency: Half-yearly                    

Time to first decision: 2.4 Weeks

Submission to publication: 4 Weeks        

Acceptance rate: 26%

ISSN:  2972-3418

Open Access Review

A comprehensive review on biogenically synthesized inorganic nanoparticles and their applications in anticancer activities

by Zahra Barreto a Areej Fatima c Tuba Tariq c Ayesha Zafar b Muhammad Saqib Saif c Amina Zafar a Areeba Yousaf c Huang Xue d,*  and  Murtaza Hasan a,d,* orcid
a
Department of Biotechnology, Faculty of Chemical & Biological Sciences, The Islamia University of Bahawalpur, Bahawalpur, Punjab 63100, Pakistan
b
Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
c
Department of Biochemistry, Faculty of Chemical & Biological Sciences, The Islamia University of Bahawalpur, Bahawalpur, Punjab 63100, Pakistan
d
College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
*
Author to whom correspondence should be addressed.
BAB  2023, 9; 2(1), 9; https://doi.org/10.58567/bab02010004
Received: 8 June 2023 / Accepted: 8 August 2023 / Published: 16 August 2023

Abstract

The progression in nanotechnology has revolutionized the biomedical sciences for diagnosis and treatment of diseases like cancer. There have been many kinds of nanomaterials but Inorganic nanomaterials have been considered potential candidates for anticancer activities due to their high biocompatibility, less toxicity, high stability, and high precision in targeting affected cells. Several synthesis approaches have been used to prepared these nanoparticles, such as physical, chemical, and biogenic methods. Due to higher toxicity and adverse effects of chemical methods, eco-friendly way such as biosynthesized inorganic nanomaterials have attained much attention for multiple application particularly treatment of diseases. This review presents a comprehensive and updated knowledge (2015-2023) regarding the cancer treatment. The article first categorizes biogenically synthesized inorganic nanoparticles into three main groups: metallic nanoparticles, metal oxide nanoparticles, and quantum dots and then successful stories related to cancer treatment. This will also provide very effective platform for researchers and academia to detail the biogenically synthesized inorganic nanoparticles’ morphology, their characterization, targeted cancer cells.


Copyright: © 2023 by Barreto, Fatima, Tariq, Zafar, Saif, Zafar, Yousaf, Xue and Hasan. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) (Creative Commons Attribution 4.0 International License). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Show Figures

Share and Cite

ACS Style
Barreto, Z.; Fatima, A.; Tariq, T.; Zafar, A.; Saif, M. S.; Zafar, A.; Yousaf, A.; Xue, H.; Hasan, M. A comprehensive review on biogenically synthesized inorganic nanoparticles and their applications in anticancer activities. Biomaterials and Biosensors, 2023, 2, 9. https://doi.org/10.58567/bab02010004
AMA Style
Barreto Z, Fatima A, Tariq T, Zafar A, Saif M S, Zafar A, Yousaf A, Xue H, Hasan M. A comprehensive review on biogenically synthesized inorganic nanoparticles and their applications in anticancer activities. Biomaterials and Biosensors; 2023, 2(1):9. https://doi.org/10.58567/bab02010004
Chicago/Turabian Style
Barreto, Zahra; Fatima, Areej; Tariq, Tuba; Zafar, Ayesha; Saif, Muhammad S.; Zafar, Amina; Yousaf, Areeba; Xue, Huang; Hasan, Murtaza 2023. "A comprehensive review on biogenically synthesized inorganic nanoparticles and their applications in anticancer activities" Biomaterials and Biosensors 2, no.1:9. https://doi.org/10.58567/bab02010004
APA style
Barreto, Z., Fatima, A., Tariq, T., Zafar, A., Saif, M. S., Zafar, A., Yousaf, A., Xue, H., & Hasan, M. (2023). A comprehensive review on biogenically synthesized inorganic nanoparticles and their applications in anticancer activities. Biomaterials and Biosensors, 2(1), 9. https://doi.org/10.58567/bab02010004

Article Metrics

Article Access Statistics

References

  1. H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray, Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries, CA Cancer J Clin, (2021). doi: 10.3322/caac.21660.
  2. H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray, Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries, CA Cancer J Clin, (2021). doi: 10.3322/caac.21660.
  3. R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2018, CA Cancer J Clin, (2018). doi:10.3322/caac.21442.
  4. Y. Ran, R. Wang, M. Hasan, Q. Jia, B. Tang, S. Shan, Y. Deng, H. Qing, Radioprotective effects of dragon’s blood and its extracts on radiation-induced myelosuppressive mice, J Ethnopharmacol, 154 (2014). doi: 10.1016/j.jep.2014.04.036.
  5. M. Hasan, Z. Teng, J. Iqbal, U. Awan, S. Meng, R. Dai, H. Qing, Y. Deng, Assessment of bioreducing and stabilizing potential of dragon’s blood (dracaena cochinchinensis, Lour S C Chen) resin extract in synthesis of silver nanoparticles, Nanoscience and Nanotechnology Letters, (2013). doi:10.1166/NNL.2013.1600.
  6. A. Zafar, M. Hasan, T. Tariq, Z. Dai, Enhancing Cancer Immunotherapeutic Efficacy with Sonotheranostic Strategies, Bioconjug Chem, (2021). doi: 10.1021/acs.bioconjchem.1c00437
  7. R. Baskar, K.A. Lee, R. Yeo, K.W. Yeoh, Cancer and radiation therapy: Current advances and future directions, Int J Med Sci, (2012). doi: 10.7150/ijms.3635.
  8. H. Yang, R.M. Villani, H. Wang, M.J. Simpson, M.S. Roberts, M. Tang, X. Liang, The role of cellular reactive oxygen species in cancer chemotherapy, Journal of Experimental and Clinical Cancer Research, (2018). doi: 10.1186/s13046-018-0909-x.
  9. K. Esfahani, L. Roudaia, N. Buhlaiga, S. V. Del Rincon, N. Papneja, W.H. Miller, A review of cancer immunotherapy: From the past, to the present, to the future, Current Oncology, (2020). doi:10.3747/co.27.5223.
  10. Toxicological Risk Assessment and Multi-System Health Impacts from Exposure, 2021.
  11. D. Waghray, Q. Zhang, Inhibit or Evade Multidrug Resistance P-Glycoprotein in Cancer Treatment, J Med Chem, (2018). doi: 10.1021/acs.jmedchem.7b01457.
  12. D. Cao, X. Shu, D. Zhu, S. Liang, M. Hasan, S. Gong, Lipid-coated ZnO nanoparticles synthesis, characterization and cytotoxicity studies in cancer cell, Nano Converg, (2020). doi:10.1186/s40580-020-00224-9.
  13. Y. Yao, Y. Zhou, L. Liu, Y. Xu, Q. Chen, Y. Wang, S. Wu, Y. Deng, J. Zhang, A. Shao, Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance, Front Mol Biosci, (2020). doi:10.3389/fmolb.2020.00193.
  14. M.Z. El-Readi, M.A. Althubiti, Cancer Nanomedicine: A New Era of Successful Targeted Therapy, J Nanomater, (2019). doi:10.1155/2019/4927312.
  15. J. Ahmad, S. Amin, M. Rahman, R. Rub, M. Singhal, M. Ahmad, Z. Rahman, R. Addo, F. Ahmad, G. Mushtaq, M. Kamal, S. Akhter, Solid Matrix Based Lipidic Nanoparticles in Oral Cancer Chemotherapy: Applications and Pharmacokinetics, Curr Drug Metab, (2015). doi:10.2174/1389200216666150812122128.
  16. S. Tang, J. Zheng, Antibacterial Activity of Silver Nanoparticles: Structural Effects, Adv Healthc Mater, (2018). doi: 10.1002/adhm.201701503.
  17. G.M. Soliman, Nanoparticles as safe and effective delivery systems of antifungal agents: Achievements and challenges, Int J Pharm, (2017). doi: 10.1016/j.ijpharm.2017.03.019.
  18. D.F. Emerich, C.G. Thanos, Targeted nanoparticle-based drug delivery and diagnosis, J Drug Target, (2007). doi: 10.1080/10611860701231810.
  19. A. Abdullahi1, M.T. Muhammad, J. Suleiman, R.M. Sokoto1, Isolation and Identification of Bacteria Associated with Aerial Part of Rice Plant from Kware Lake, Asian Journal of Research in Botany, (2018).
  20. L. Huang, R. Chen, J. Luo, M. Hasan, X. Shu, Synthesis of phytonic silver nanoparticles as bacterial and ATP energy silencer, J Inorg Biochem, 231 (2022). doi: 10.1016/j.jinorgbio.2022.111802.
  21. S. Akbar, K.S. Haleem, I. Tauseef, W. Rehman, N. Ali, M. Hasan, Raphanus sativus Mediated Synthesis, Characterization and Biological Evaluation of Zinc Oxide Nanoparticles, Nanoscience and Nanotechnology Letters, (2018). doi:10.1166/nnl.2017.2550.
  22. G. Mustafa, S. Miyagawa, M. Hasan, H. Yamaguchi, K. Hitachi, K. Tsuchida, S. Komatsu, Bio-Synthesized Nanoflowers and Chemically Synthesized Nanowires Zinc-Oxide induced Changes in the Redox and Protein Folding in Soybean Seedlings: a Proteomic Analysis, J Plant Growth Regul, (2022). doi:10.1007/s00344-022-10728-9.
  23. A. Zafar, T. Tariq, M. Hasan, M. Nazar, M.N. Rasheed, N. Mahmood, X. Shu, Green-maturation of Cobalt-Oxide nano-sponges for reinforced bacterial apoptosis, Colloids and Interface Science Communications, 45 (2021). doi:10.1016/j.colcom.2021.100531.
  24. R. Sharma, A. Sarkar, R. Jha, A. Kumar Sharma, D. Sharma, Sol-gel–mediated synthesis of TiO2 nanocrystals: Structural, optical, and electrochemical properties, Int J Appl Ceram Technol, (2020). doi:10.1111/ijac.13439.
  25. V.M. Ramakrishnan, M. Natarajan, A. Santhanam, V. Asokan, D. Velauthapillai, Size controlled synthesis of TiO2 nanoparticles by modified solvothermal method towards effective photo catalytic and photovoltaic applications, Mater Res Bull, (2018). doi:10.1016/j.materresbull.2017.09.017.
  26. N.C. Horti, M.D. Kamatagi, N.R. Patil, S.K. Nataraj, M.S. Sannaikar, S.R. Inamdar, Synthesis and photoluminescence properties of titanium oxide (TiO2) nanoparticles: Effect of calcination temperature, Optik (Stuttg), (2019). doi:10.1016/j.ijleo.2019.163070.
  27. Z. Wang, A. Ali Haidry, L. Xie, A. Zavabeti, Z. Li, W. Yin, R. Lontio Fomekong, B. Saruhan, Acetone sensing applications of Ag modified TiO2 porous nanoparticles synthesized via facile hydrothermal method, Appl Surf Sci, (2020).
  28. J.F. De Carvalho, S.N. De Medeiros, M.A. Morales, A.L. Dantas, A.S. Carriço, Synthesis of magnetite nanoparticles by high energy ball milling, in: Appl Surf Sci, 2013. doi:10.1016/j.apsusc.2013.01.118
  29. N. Salah, S.S. Habib, Z.H. Khan, A. Memic, A. Azam, E. Alarfaj, N. Zahed, S. Al-Hamedi, High-energy ball milling technique for ZnO nanoparticles as antibacterial material, Int J Nanomedicine, (2011). doi: 10.2147/IJN.S18267.
  30. M. Benelmekki, J. Vernieres, J.H. Kim, R.E. Diaz, P. Grammatikopoulos, M. Sowwan, On the formation of ternary metallic-dielectric multicore-shell nanoparticles by inert-gas condensation method, Mater Chem Phys, (2015). doi:10.1016/j.matchemphys.2014.11.066.
  31. K. Okuyama, W.W. Lenggoro, Preparation of nanoparticles via spray route, Chem Eng Sci, (2003). doi:10.1016/S0009-2509(02)00578-X.
  32. L. Castaldi, K. Giannakopoulos, A. Travlos, D. Niarchos, S. Boukari, E. Beaurepaire, CoPt nanoparticles deposited by electron beam evaporation, in: J Magn Magn Mater, 2005. doi:10.1016/j.jmmm.2004.11.523.
  33. K.N. Thakkar, S.S. Mhatre, R.Y. Parikh, Biological synthesis of metallic nanoparticles, Nanomedicine, (2010). doi: 10.1016/j.nano.2009.07.002.
  34. S. Wageh, M. Maize, A.M. Donia, A.A. Al-Ghamdi, A. Umar, Synthesis and characterization of mercaptoacetic acid capped cadmium sulphide quantum dots, J Nanosci Nanotechnol, (2015). doi:10.1166/jnn.2015.10346.
  35. J. Wang, L. Sui, J. Huang, L. Miao, Y. Nie, K. Wang, Z. Yang, Q. Huang, X. Gong, Y. Nan, K. Ai, MoS2-based nanocomposites for cancer diagnosis and therapy, Bioact Mater, (2021). doi:10.1016/j.bioactmat.2021.04.021.
  36. A.D. Mihai, C. Chircov, A.M. Grumezescu, A.M. Holban, Magnetite nanoparticles and essential oils systems for advanced antibacterial therapies, Int J Mol Sci, (2020). doi:10.3390/ijms21197355.
  37. G.A. Marcelo, C. Lodeiro, J.L. Capelo, J. Lorenzo, E. Oliveira, Magnetic, fluorescent and hybrid nanoparticles: From synthesis to application in biosystems, Materials Science and Engineering C, (2020). doi: 10.1016/j.msec.2019.110104.
  38. M.A. Malik, P. O’Brien, N. Revaprasadu, A simple route to the synthesis of core/shell nanoparticles of chalcogenides, Chemistry of Materials, (2002). doi:10.1021/cm011154w.
  39. C. Krishnaraj, P. Muthukumaran, R. Ramachandran, M.D. Balakumaran, P.T. Kalaichelvan, Acalypha indica Linn: Biogenic synthesis of silver and gold nanoparticles and their cytotoxic effects against MDA-MB-231, human breast cancer cells, Biotechnology Reports, (2014). doi:10.1016/j.btre.2014.08.002.
  40. M. Hasan, I. Ullah, H. Zulfiqar, K. Naeem, A. Iqbal, H. Gul, M. Ashfaq, N. Mahmood, Biological entities as chemical reactors for synthesis of nanomaterials: Progress, challenges and future perspective, Mater Today Chem, (2018). doi:10.1016/J.MTCHEM.2018.02.003.
  41. M. Hasan, W. Yang, Y. Ju, X. Chu, Y. Wang, Y. Deng, N. Mahmood, Y. Hou, Biocompatibility of iron carbide and detection of metals ions signaling proteomic analysis via HPLC/ESI-Orbitrap, Nano Res, (2017). doi:10.1007/s12274-016-1375-4.
  42. X. Li, H. Xu, Z.S. Chen, G. Chen, Biosynthesis of nanoparticles by microorganisms and their applications, J Nanomater, (2011). doi:10.1155/2011/270974.
  43. Z. Hashemi, Z.M. Mizwari, S. Mohammadi-Aghdam, S. Mortazavi-Derazkola, M. Ali Ebrahimzadeh, Sustainable green synthesis of silver nanoparticles using Sambucus ebulus phenolic extract (AgNPs@SEE): Optimization and assessment of photocatalytic degradation of methyl orange and their in vitro antibacterial and anticancer activity: Sustainable green, Arabian Journal of Chemistry, (2022). doi:10.1016/j.arabjc.2021.103525.
  44. M.N. Borovaya, A.P. Naumenko, N.A. Matvieieva, Y.B. Blume, A.I. Yemets, Biosynthesis of luminescent CdS quantum dots using plant hairy root culture, Nanoscale Res Lett, (2014). doi: 10.1186/1556-276X-9-686.
  45. S. Iravani, Green synthesis of metal nanoparticles using plants, Green Chemistry, (2011). doi:10.1039/C1GC15386B.
  46. S. Perveen, A.M. Al-Taweel, Green Chemistry and Synthesis of Anticancer Molecule, in: Green Chemistry, 2018. doi: 10.5772/intechopen.70419.
  47. M. Hasan, I. Ullah, H. Zulfiqar, K. Naeem, A. Iqbal, H. Gul, M. Ashfaq, N. Mahmood, Biological entities as chemical reactors for synthesis of nanomaterials: Progress, challenges and future perspective, Mater Today Chem, 8 (2018) 13–28. doi:10.1016/J.MTCHEM.2018.02.003.
  48. M. Hasan, J. Iqbal, U. Awan, Y. Saeed, Y. Ranran, Y. Liang, R. Dai, Y. Deng, Mechanistic study of silver nanoparticle’s synthesis by Dragon’s blood resin ethanol extract and antiradiation activity, J Nanosci Nanotechnol, (2015). doi: 10.1166/jnn.2015.9090.
  49. M. Hasan, M. Sajjad, A. Zafar, R. Hussain, S.I. Anjum, M. Zia, Z. Ihsan, X. Shu, Blueprinting morpho-anatomical episodes via green silver nanoparticles foliation, Green Processing and Synthesis, 11 (2022) 697–708. doi:10.1515/gps-2022-0050.
  50. F.K. Liu, F.H. Ko, P.W. Huang, C.H. Wu, T.C. Chu, Studying the size/shape separation and optical properties of silver nanoparticles by capillary electrophoresis, J Chromatogr A, (2005). doi:10.1016/j.chroma.2004.11.010.
  51. S. Hasan, A Review on Nanoparticles: Their Synthesis and Types, Research Journal of Recent Sciences Res. J. Recent. Sci. Uttar Pradesh (Lucknow Campus), (2014).
  52. X. Zhang, S. Yan, R.D. Tyagi, R.Y. Surampalli, Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates, Chemosphere, (2011). doi:10.1016/j.chemosphere.2010.10.023.
  53. S. Bhakya, S. Muthukrishnan, M. Sukumaran, M. Muthukumar, Biogenic synthesis of silver nanoparticles and their antioxidant and antibacterial activity, Applied Nanoscience (Switzerland), (2016). doi:10.1007/s13204-015-0473-z.
  54. K. Elangovan, D. Elumalai, S. Anupriya, R. Shenbhagaraman, P.K. Kaleena, K. Murugesan, Phyto mediated biogenic synthesis of silver nanoparticles using leaf extract of Andrographis echioides and its bio-efficacy on anticancer and antibacterial activities, J Photochem Photobiol B, (2015). doi:10.1016/j.jphotobiol.2015.05.015.
  55. A. Jafari, L. Pourakbar, K. Farhadi, L. Mohamadgolizad, Y. Goosta, Biological synthesis of silver nanoparticles and evaluation of antibacterial and antifungal properties of silver and copper nanoparticles, Turkish Journal of Biology, (2015). doi:10.3906/biy-1406-81.
  56. D. Sharma, S. Kanchi, K. Bisetty, Biogenic synthesis of nanoparticles: A review, Arabian Journal of Chemistry, (2019). doi:10.1016/j.arabjc.2015.11.002.
  57. A. Chauhan, S. Zubair, S. Tufail, A. Sherwani, M. Sajid, S.C. Raman, A. Azam, M. Owais, Fungus-mediated biological synthesis of gold nanoparticles: potential in detection of liver cancer, Int J Nanomedicine, (2011). doi: 10.2147/IJN.S23195.
  58. C. Ankit, M. Sharma, A. Chokriwal, M.M. Sharma, A. Singh, Biological Synthesis of Nanoparticles Using Bacteria and Their Applications, American Journal of PharmTech Research, (2014).
  59. F. Arockiya Aarthi Rajathi, C. Parthiban, V. Ganesh Kumar, P. Anantharaman, Biosynthesis of antibacterial gold nanoparticles using brown alga, Stoechospermum marginatum (kützing), Spectrochim Acta A Mol Biomol Spectrosc, (2012). doi: 10.1016/j.saa.2012.08.081.
  60. T. Maruyama, Y. Fujimoto, T. Maekawa, Synthesis of gold nanoparticles using various amino acids, J Colloid Interface Sci, (2014). doi: 10.1016/j.jcis.2014.12.046.
  61. V. Kathiravan, S. Ravi, S. Ashokkumar, Synthesis of silver nanoparticles from Melia dubia leaf extract and their in vitro anticancer activity, Spectrochim Acta A Mol Biomol Spectrosc, (2014). doi:10.1016/j.saa.2014.03.107.
  62. G. Singaravelu, J.S. Arockiamary, V.G. Kumar, K. Govindaraju, A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville, Colloids Surf B Biointerfaces, (2007). doi: 10.1016/j.colsurfb.2007.01.010.
  63. K.N. Thakkar, S.S. Mhatre, R.Y. Parikh, Biological synthesis of metallic nanoparticles, Nanomedicine, (2010). doi: 10.1016/j.nano.2009.07.002.
  64. K. Mathivanan, R. Selva, J.U. Chandirika, R.K. Govindarajan, R. Srinivasan, G. Annadurai, P.A. Duc, Biologically synthesized silver nanoparticles against pathogenic bacteria: Synthesis, calcination and characterization, Biocatal Agric Biotechnol, (2019). doi:10.1016/j.bcab.2019.101373.
  65. P. Dhandapani, A.A. Prakash, M.S. AlSalhi, S. Maruthamuthu, S. Devanesan, A. Rajasekar, Ureolytic bacteria mediated synthesis of hairy ZnO nanostructure as photocatalyst for decolorization of dyes, Mater Chem Phys, (2020). doi:10.1016/j.matchemphys.2020.122619.
  66. S. Chatterjee, S. Mahanty, P. Das, P. Chaudhuri, S. Das, Biofabrication of iron oxide nanoparticles using manglicolous fungus Aspergillus niger BSC-1 and removal of Cr(VI) from aqueous solution, Chemical Engineering Journal, (2020). doi:10.1016/j.cej.2019.123790.
  67. J.A. Colin, I.E. Pech-Pech, M. Oviedo, S.A. Águila, J.M. Romo-Herrera, O.E. Contreras, Gold nanoparticles synthesis assisted by marine algae extract: Biomolecules shells from a green chemistry approach, Chem Phys Lett, (2018). doi:10.1016/j.cplett.2018.08.022.
  68. S. Shankar, L. Jaiswal, J.W. Rhim, New insight into sulfur nanoparticles: Synthesis and applications, Crit Rev Environ Sci Technol, (2021). doi:10.1080/10643389.2020.1780880.
  69. F. Gulbagca, S. Ozdemir, M. Gulcan, F. Sen, Synthesis and characterization of Rosa canina-mediated biogenic silver nanoparticles for anti-oxidant, antibacterial, antifungal, and DNA cleavage activities, Heliyon, (2019). doi: 10.1016/j.heliyon.2019.e02980.
  70. K.B. Narayanan, N. Sakthivel, Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents, Adv Colloid Interface Sci, (2011). doi: 10.1016/j.heliyon.2019.e02980.
  71. F.T. Minhas, G. Arslan, I.H. Gubbuk, C. Akkoz, B.Y. Ozturk, B. Asıkkutlu, U. Arslan, M. Ersoz, Evaluation of antibacterial properties on polysulfone composite membranes using synthesized biogenic silver nanoparticles with Ulva compressa (L) Kütz and Cladophora glomerata (L) Kütz extracts, Int J Biol Macromol, (2018). doi: 10.1016/j.ijbiomac.2017.08.149.
  72. K. Karimzadeh, Elham sharifi, N. Bakhshi, M. Ramzanpoor, Biogenic silver nanoparticles using Oxalis corniculata characterization and their clinical implications, J Drug Deliv Sci Technol, (2019). doi:10.1016/j.jddst.2019.101263.
  73. K. Mathivanan, R. Selva, J.U. Chandirika, R.K. Govindarajan, R. Srinivasan, G. Annadurai, P.A. Duc, Biologically synthesized silver nanoparticles against pathogenic bacteria: Synthesis, calcination and characterization, Biocatal Agric Biotechnol, (2019). doi:10.1016/j.bcab.2019.101373.
  74. T. Tariq, A. Zafar, M. Hasan, X. Huang, F. Tariq, R. Hussain, M. Saqib Saif, M. Waqas, Y. Manzoor, M. Anum Nazir, S. Gul Hassan, H. Umer Javed, S. Ishtiaq Anjum, X. Shu, S.X. Green, Green Toolbox for nanoparticles synthesis: A revolutionized framework of bio-compatible material, n.d.
  75. F. Ameen, S. AlYahya, M. Govarthanan, N. ALjahdali, N. Al-Enazi, K. Alsamhary, W.A. Alshehri, S.S. Alwakeel, S.A. Alharbi, Soil bacteria Cupriavidus sp mediates the extracellular synthesis of antibacterial silver nanoparticles, J Mol Struct, (2020). doi:10.1016/j.molstruc.2019.127233.
  76. M. Manjunath Hulikere, C.G. Joshi, Characterization, antioxidant and antimicrobial activity of silver nanoparticles synthesized using marine endophytic fungus- Cladosporium cladosporioides, Process Biochemistry, (2019). doi:10.1016/j.bbrep.2017.08.011.
  77. S. Mourdikoudis, R.M. Pallares, N.T.K. Thanh, Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties, Nanoscale, (2018). doi:10.1039/C8NR02278J.
  78. F. Lv, M. Hasan, H. Dang, S.G. Hassan, W. Meng, Y. Deng, R. Dai, Optimized luteolin loaded solid lipid nanoparticle under stress condition for enhanced bioavailability in rat plasma, J Nanosci Nanotechnol, 16 (2016). doi:10.1166/jnn.2016.11908.
  79. H. Dang, M.H.W. Meng, H. Zhao, J. Iqbal, R. Dai, Y. Deng, F. Lv, Luteolin-loaded solid lipid nanoparticles synthesis, characterization, & improvement of bioavailability, pharmacokinetics in vitro and vivo studies, Journal of Nanoparticle Research, (2014). doi:10.1007/s11051-014-2347-9.
  80. M. Hasan, J. Iqbal, U. Awan, N. Xin, H. Dang, B. Waryani, Y. Saeed, K. Ullah, R. Dai, Y. Deng, LX loaded nanoliposomes synthesis, characterization and cellular uptake studies in H2O2 stressed SH-SY5Y cells, J Nanosci Nanotechnol, (2014). doi: 10.1166/jnn.2014.8201.
  81. H.C. Huang, S. Barua, G. Sharma, S.K. Dey, K. Rege, Inorganic nanoparticles for cancer imaging and therapy, Journal of Controlled Release, (2011). doi: 10.1016/j.jconrel.2011.06.004.
  82. N. Xin, M. Hasan, W. Li, Y. Li, Juglans mandshurica Maxim extracts exhibit antitumor activity on HeLa cells in vitro, Mol Med Rep, 9 (2014). doi: 10.3892/mmr.2014.1979.
  83. J. Tian, M. An, X. Zhao, Y. Wang, M. Hasan, Advances in Fluorescent Sensing Carbon Dots: An Account of Food Analysis, ACS Omega, 8 (2023). doi: 10.1021/acsomega.2c07986.
  84. S.U. Hassan, M. Hasan, A. Firdous, M.A. Farid, Preparation, characterization and in vitro biological evaluation of nano-tubular polyoxometalate, J Nanosci Nanotechnol, 17 (2017). doi:10.1166/jnn.2016.13459.
  85. F. Mukhtar, T. Munawar, M.S. Nadeem, M.N. ur Rehman, M. Riaz, F. Iqbal, Dual S-scheme heterojunction ZnO–V2O5–WO3 nanocomposite with enhanced photocatalytic and antimicrobial activity, Mater Chem Phys, 263 (2021). doi:10.1016/j.matchemphys.2021.124372.
  86. F. Mukhtar, T. Munawar, M.S. Nadeem, S.A. Khan, M. Koc, S. Batool, M. Hasan, F. Iqbal, Enhanced sunlight-absorption of Fe2O3 covered by PANI for the photodegradation of organic pollutants and antimicrobial inactivation, Advanced Powder Technology, 33 (2022). doi:10.1016/j.apt.2022.103708.
  87. T. Munawar, M.S. Nadeem, F. Mukhtar, S. Manzoor, M.N. Ashiq, S. Batool, M. Hasan, F. Iqbal, Enhanced photocatalytic, antibacterial, and electrochemical properties of CdO-based nanostructures by transition metals co-doping, Advanced Powder Technology, 33 (2022). doi:10.1016/j.apt.2022.103451.
  88. M.S. Nadeem, T. Munawar, F. Mukhtar, S. Batool, M. Hasan, U.A. Akbar, A.S. Hakeem, F. Iqbal, Energy-levels well-matched direct Z-scheme ZnNiNdO/CdS heterojunction for elimination of diverse pollutants from wastewater and microbial disinfection, Environmental Science and Pollution Research, (2022). doi: 10.1007/s11356-022-19271-2.
  89. R. Lucena, B.M. Simonet, S. Cárdenas, M. Valcárcel, Potential of nanoparticles in sample preparation, J Chromatogr A, (2011). doi: 10.1016/j.chroma.2010.10.069.
  90. M. Hasan, H. Gulzar, A. Zafar, A. ul Haq, G. Mustafa, T. Tariq, A. Khalid, A. Mahmmod, X. Shu, N. Mahmood, Multiplexing surface anchored functionalized iron carbide nanoparticle: A low molecular weight proteome responsive nano-tracer, Colloids Surf B Biointerfaces, (2021). doi:10.1016/j.colsurfb.2021.111746.
  91. S.S. Salem, A.A. Mohamed, M.S. Gl-Gamal, M. Talat, A. Fouda, Biological decolorization and degradation of azo dyes from textile wastewater effluent by Aspergillus niger, Egypt J Chem, (2019). doi:10.21608/EJCHEM.2019.11720.1747.
  92. T.I. Shaheen, S.S. Salem, A. Fouda, Current Advances in Fungal Nanobiotechnology: Mycofabrication and Applications, in: 2021. doi:10.1007/978-981-33-4777-9_4.
  93. A.T. Khalil, M. Ovais, J. Iqbal, A. Ali, M. Ayaz, M. Abbas, I. Ahmad, H.P. Devkota, Microbes-mediated synthesis strategies of metal nanoparticles and their potential role in cancer therapeutics, Semin Cancer Biol, (2021). doi: 10.1016/j.semcancer.2021.06.006.
  94. L.B. Truong, D. Medina-Cruz, E. Mostafavi, N. Rabiee, Selenium nanomaterials to combat antimicrobial resistance, Molecules, (2021). doi:10.3390/molecules26123611.
  95. N. GÜRSOY, FUNGUS-MEDIATED SYNTHESIS OF SILVER NANOPARTICLES (AgNP) AND INHIBITORY EFFECT ON Aspergillus spp IN COMBINATION WITH ANTIFUNGAL AGENT, Cumhuriyet Science Journal, (2020). doi:10.17776/csj.653627.
  96. N. Konappa, A.C. Udayashankar, N. Dhamodaran, S. Krishnamurthy, S. Jagannath, F. Uzma, C.K. Pradeep, S. De Britto, S. Chowdappa, S. Jogaiah, Ameliorated antibacterial and antioxidant properties by trichoderma harzianum mediated green synthesis of silver nanoparticles, Biomolecules, (2021). doi:10.3390/biom11040535.
  97. P. Dutta, J. Kumari, P. Borah, P. Baruah, P.K. Kaman, G. Das, A. Kumari, B. Saikia, Synthesis of fungus mediate silver nanoparticles (AgNP) its characterization and study the efficacy against inoculam, biomass and protein content of Fusarium oxysporum, Int J Chem Stud, (2020). doi:10.22271/chemi.2020.v8.i4ae.10029.
  98. S. Rajeshkumar, D. Sivapriya, Fungus-Mediated Nanoparticles: Characterization and Biomedical Advances, in: Nanoparticles in Medicine, 2020. doi:10.1007/978-981-13-8954-2_7.
  99. M. Rai, S. Bonde, P. Golinska, J. Trzcińska-Wencel, A. Gade, K. Abd-Elsalam, S. Shende, S. Gaikwad, A.P. Ingle, Fusarium as a novel fungus for the synthesis of nanoparticles: Mechanism and applications, Journal of Fungi, (2021). doi:10.3390/jof7020139.
  100. T. Akther, V. Mathipi, N.S. Kumar, M. Davoodbasha, H. Srinivasan, Fungal-mediated synthesis of pharmaceutically active silver nanoparticles and anticancer property against A549 cells through apoptosis, Environmental Science and Pollution Research, (2019). doi: 10.1007/s11356-019-04718-w.
  101. S. Ahmad, S. Munir, N. Zeb, A. Ullah, B. Khan, J. Ali, M. Bilal, M. Omer, M. Alamzeb, S.M. Salman, S. Ali, Green nanotechnology: A review on green synthesis of silver nanoparticles — An ecofriendly approach, Int J Nanomedicine, (2019). doi:10.2147/IJN.S200254.
  102. L.P. Costa Silva, J. Pinto Oliveira, W.J. Keijok, A.R. da Silva, A.R. Aguiar, M.C.C. Guimarães, C.M. Ferraz, J.V. Araújo, F.L. Tobias, F.R. Braga, Extracellular biosynthesis of silver nanoparticles using the cell-free filtrate of nematophagous fungus Duddingtonia flagrans, Int J Nanomedicine, (2017). doi:10.2147/IJN.S137703.
  103. P. Ramalingmam, S. Muthukrishnan, P. Thangaraj, Biosynthesis of Silver Nanoparticles Using an Endophytic Fungus, Curvularialunata and Its Antimicrobial Potential, Journal of Nanoscience and Nanoengineering, (2015).
  104. K.S. Rajam, M.E. Rani, R. Gunaseeli, M.H. Munavar, Extracellular synthesis of silver nanoparticles by the fungus emericella nidulans EV4 and its application, Indian J Exp Biol, (2017).
  105. L. Ma, W. Su, J.X. Liu, X.X. Zeng, Z. Huang, W. Li, Z.C. Liu, J.X. Tang, Optimization for extracellular biosynthesis of silver nanoparticles by Penicillium aculeatum Su1 and their antimicrobial activity and cytotoxic effect compared with silver ions, Materials Science and Engineering C, (2017). doi:10.1016/j.msec.2017.03.294.
  106. H. Korbekandi, Z. Ashari, S. Iravani, S. Abbasi, Optimization of biological synthesis of silver nanoparticles using Fusarium oxysporum, Iranian Journal of Pharmaceutical Research, (2013).
  107. S.M. El-Sonbaty, Fungus-mediated synthesis of silver nanoparticles and evaluation of antitumor activity, Cancer Nanotechnol, (2013). doi: 10.1007/s12645-013-0038-3.
  108. P. Manivasagan, J. Venkatesan, K. Senthilkumar, K. Sivakumar, S.K. Kim, Biosynthesis, antimicrobial and cytotoxic effect of silver nanoparticles using a novel Nocardiopsis sp MBRC-1, Biomed Res Int, (2013). doi: 10.1155/2013/287638.
  109. R. P., S. P., V. J., S. T., S. D.N.P., A. K., D. R., Green synthesis of silver nanoparticles by Aspergillus consortium and evaluating its anticancer activity against Human breast adenocarcinoma cell line (MCF7), Pharmaceutical and Biological Evaluations, (2017). doi: 10.26510/2394-0859.pbe.2017.05.
  110. M.A. Huq, S. Akter, Biosynthesis, characterization and antibacterial application of novel silver nanoparticles against drug resistant pathogenic klebsiella pneumoniae and salmonella enteritidis, Molecules, (2021). doi: 10.3390/molecules26195996.
  111. P. Singh, S. Pandit, C. Jers, A.S. Joshi, J. Garnæs, I. Mijakovic, Silver nanoparticles produced from Cedecea sp exhibit antibiofilm activity and remarkable stability, Sci Rep, (2021). doi:10.1038/s41598-021-92006-4.
  112. C.P. Lau, M.F. Abdul-Wahab, J. Jaafar, G.F. Chan, N.A. Abdul Rashid, Toxic effect of high concentration of sonochemically synthesized polyvinylpyrrolidone-coated silver nanoparticles on Citrobacter sp A1 and Enterococcus sp C1, Journal of Microbiology, Immunology and Infection, (2017). doi:10.1016/j.jmii.2015.08.004.
  113. M.A. Huq, S. Akter, Bacterial mediated rapid and facile synthesis of silver nanoparticles and their antimicrobial efficacy against pathogenic microorganisms, Materials, (2021). doi:10.3390/ma14102615.
  114. S. Akter, M.A. Huq, Biologically rapid synthesis of silver nanoparticles by Sphingobium sp MAH-11T and their antibacterial activity and mechanisms investigation against drug-resistant pathogenic microbes, Artif Cells Nanomed Biotechnol, (2020). doi: 10.1080/21691401.2020.1730390.
  115. M.A. Almalki, A.Y.Z. Khalifa, Silver nanoparticles synthesis from Bacillus sp KFU36 and its anticancer effect in breast cancer MCF-7 cells via induction of apoptotic mechanism, J Photochem Photobiol B, (2020). doi: 10.1016/j.jphotobiol.2020.111786.
  116. A. Ranjani, P.M. Gopinath, S. Ananth, G. Narchonai, P. Santhanam, N. Thajuddin, D. Dhanasekaran, Multidimensional dose–response toxicity exploration of silver nanoparticles from Nocardiopsis flavascens RD30, Applied Nanoscience (Switzerland), (2018). doi: 10.1007/s13204-018-0824-7.
  117. A. Bakhtiari-Sardari, M. Mashreghi, H. Eshghi, F. Behnam-Rasouli, E. Lashani, B. Shahnavaz, Comparative evaluation of silver nanoparticles biosynthesis by two cold-tolerant Streptomyces strains and their biological activities, Biotechnol Lett, (2020). doi: 10.1007/s10529-020-02921-1.
  118. H. Zulfiqar, A. Zafar, M.N. Rasheed, Z. Ali, K. Mehmood, A. Mazher, M. Hasan, N. Mahmood, Synthesis of silver nanoparticles using: Fagonia cretica and their antimicrobial activities, Nanoscale Adv, (2019). doi: 10.1039/C8NA00343B.
  119. Z. Wu, Z. Fu, Y. Tian, M. Hasan, L. Huang, Y. Yang, C. Li, A. Zafar, X. Shu, Fabrication and characterization of lysine hydrochloride Cu(ii) complexes and their potential for bombing bacterial resistance, Green Processing and Synthesis, 11 (2022). doi: 10.1515/gps-2022-0043.
  120. A. Roy, O. Bulut, S. Some, A.K. Mandal, M.D. Yilmaz, Green synthesis of silver nanoparticles: Biomolecule-nanoparticle organizations targeting antimicrobial activity, RSC Adv, (2019). doi:10.1039/C8RA08982E.
  121. R. Kumari, A.K. Saini, A. Kumar, R. V. Saini, Apoptosis induction in lung and prostate cancer cells through silver nanoparticles synthesized from Pinus roxburghii bioactive fraction, Journal of Biological Inorganic Chemistry, (2020). doi: 10.1007/s00775-019-01729-3.
  122. D. Singh, E. Yadav, N. Falls, V. Kumar, M. Singh, A. Verma, Phytofabricated silver nanoparticles of Phyllanthus emblica attenuated diethylnitrosamine-induced hepatic cancer via knock-down oxidative stress and inflammation, Inflammopharmacology, (2019). doi: 10.1007/s10787-018-0525-6.
  123. P. Rajasekharreddy, P.U. Rani, Biofabrication of Ag nanoparticles using Sterculia foetida L seed extract and their toxic potential against mosquito vectors and HeLa cancer cells, Materials Science and Engineering C, (2014). doi: 10.1016/j.msec.2014.03.003.
  124. A. Aygün, F. Gülbağça, M.S. Nas, M.H. Alma, M.H. Çalımlı, B. Ustaoglu, Y.C. Altunoglu, M.C. Baloğlu, K. Cellat, F. Şen, Biological synthesis of silver nanoparticles using Rheum ribes and evaluation of their anticarcinogenic and antimicrobial potential: A novel approach in phytonanotechnology, J Pharm Biomed Anal, (2020). doi: 10.1016/j.jpba.2019.113012.
  125. H. Chandra, P. Kumari, E. Bontempi, S. Yadav, Medicinal plants: Treasure trove for green synthesis of metallic nanoparticles and their biomedical applications, Biocatal Agric Biotechnol, (2020). doi: 10.1016/j.bcab.2020.101518.
  126. M. Nilavukkarasi, S. Vijayakumar, S. Prathip Kumar, Biological synthesis and characterization of silver nanoparticles with Capparis zeylanica L leaf extract for potent antimicrobial and anti proliferation efficiency, Mater Sci Energy Technol, (2020). doi: 10.1016/j.mset.2020.02.008.
  127. S. Nayaka, B. Chakraborty, S. Pallavi, M.P. Bhat, K. Shashiraj, B. Ghasti, Synthesis of biogenic silver nanoparticles using zanthoxylum rhetsa (Roxb) dc seed coat extract as reducing agent and in-vitro assessment of anticancer effect on a549 lung cancer cell line, International Journal of Pharmaceutical Research, (2020).
  128. N. Satsangi, Synthesis and Characterization of Biocompatible Silver Nanoparticles for Anticancer Application, J Inorg Organomet Polym Mater, (2020). doi: 10.1007/s10904-019-01372-0.
  129. Hemlata, P.R. Meena, A.P. Singh, K.K. Tejavath, Biosynthesis of Silver Nanoparticles Using Cucumis prophetarum Aqueous Leaf Extract and Their Antibacterial and Antiproliferative Activity against Cancer Cell Lines, ACS Omega, (2020). doi: 10.1021/acsomega.0c00155.
  130. S. Botcha, S.D. Prattipati, Callus Extract Mediated Green Synthesis of Silver Nanoparticles, Their Characterization and Cytotoxicity Evaluation Against MDA-MB-231 and PC-3 Cells, Bionanoscience, (2020). doi: 10.1007/s12668-019-00683-3.
  131. A.R. Gul, F. Shaheen, R. Rafique, J. Bal, S. Waseem, T.J. Park, Grass-mediated biogenic synthesis of silver nanoparticles and their drug delivery evaluation: A biocompatible anti-cancer therapy, Chemical Engineering Journal, (2021). doi: 10.1016/j.cej.2020.127202.
  132. A.R. Gul, F. Shaheen, R. Rafique, J. Bal, S. Waseem, T.J. Park, Grass-mediated biogenic synthesis of silver nanoparticles and their drug delivery evaluation: A biocompatible anti-cancer therapy, Chemical Engineering Journal, (2021). doi: 10.1016/j.cej.2020.127202.
  133. G. Grasso, D. Zane, R. Dragone, Microbial nanotechnology: Challenges and prospects for green biocatalytic synthesis of nanoscale materials for sensoristic and biomedical applications, Nanomaterials, (2020). doi: 10.3390/nano10010011.
  134. A. Moshfegh, A. Jalali, A. Salehzadeh, A.S. Jozani, Biological synthesis of silver nanoparticles by cell-free extract of Polysiphonia algae and their anticancer activity against breast cancer MCF-7 cell lines, Micro Nano Lett, (2019). doi: 10.1049/mnl.2018.5260.
  135. A. Elgamouz, H. Idriss, C. Nassab, A. Bihi, K. Bajou, K. Hasan, M.A. Haija, S.P. Patole, Green synthesis, characterization, antimicrobial, anti-cancer, and optimization of colorimetric sensing of hydrogen peroxide of algae extract capped silver nanoparticles, Nanomaterials, (2020). doi:10.3390/nano10091861.
  136. D. Acharya, S. Satapathy, P. Somu, U.K. Parida, G. Mishra, Apoptotic Effect and Anticancer Activity of Biosynthesized Silver Nanoparticles from Marine Algae Chaetomorpha linum Extract Against Human Colon Cancer Cell HCT-116, Biol Trace Elem Res, (2021). doi: 10.1007/s12011-020-02304-7.
  137. C. Singh, S.K. Anand, R. Upadhyay, N. Pandey, P. Kumar, D. Singh, P. Tiwari, R. Saini, K.N. Tiwari, S.K. Mishra, R. Tilak, Green synthesis of silver nanoparticles by root extract of Premna integrifolia L and evaluation of its cytotoxic and antibacterial activity, Mater Chem Phys, 297 (2023) 127413. doi:10.1016/j.matchemphys.2023.127413.
  138. V. Mihailović, N. Srećković, Z.P. Nedić, S. Dimitrijević, M. Matić, A. Obradović, D. Selaković, G. Rosić, J.S. Katanić Stanković, Green Synthesis of Silver Nanoparticles Using Salvia verticillata and Filipendula ulmaria Extracts: Optimization of Synthesis, Biological Activities, and Catalytic Properties, Molecules, 28 (2023). doi: 10.3390/molecules28020808.
  139. Ganesh Kumar A, Pugazhenthi E, Sankarganesh P, Muthusamy C, Rajasekaran M, Lokesh E, A. Khusro, Kavya G, “Cleome rutidosperma leaf extract mediated biosynthesis of silver nanoparticles and anti-candidal, anti-biofilm, anti-cancer, and molecular docking analysis,” Biomass Convers Biorefin, (2023). doi: 10.1007/s13399-023-03806-9.
  140. M. Oves, M. Ahmar Rauf, M. Aslam, H.A. Qari, H. Sonbol, I. Ahmad, G. Sarwar Zaman, M. Saeed, Green synthesis of silver nanoparticles by Conocarpus Lancifolius plant extract and their antimicrobial and anticancer activities, Saudi J Biol Sci, 29 (2022) 460–471. doi: 10.1016/j.sjbs.2021.09.007.
  141. Z. Hashemi, Z.M. Mizwari, S. Mohammadi-Aghdam, S. Mortazavi-Derazkola, M. Ali Ebrahimzadeh, Sustainable green synthesis of silver nanoparticles using Sambucus ebulus phenolic extract (AgNPs@SEE): Optimization and assessment of photocatalytic degradation of methyl orange and their in vitro antibacterial and anticancer activity, Arabian Journal of Chemistry, 15 (2022) 103525. doi: 10.1016/j.arabjc.2021.103525.
  142. N.N. Farshori, M.M. Al-Oqail, E.S. Al-Sheddi, S.M. Al-Massarani, Q. Saquib, M.A. Siddiqui, R. Wahab, A.A. Al-Khedhairy, Green synthesis of silver nanoparticles using Phoenix dactylifera seed extract and its anticancer effect against human lung adenocarcinoma cells, J Drug Deliv Sci Technol, 70 (2022) 103260. doi: 10.1016/j.jddst.2022.103260.
  143. S. Shyamalagowri, P. Charles, J. Manjunathan, M. Kamaraj, R. Anitha, A. Pugazhendhi, In vitro anticancer activity of silver nanoparticles phyto-fabricated by Hylocereus undatus peel extracts on human liver carcinoma (HepG2) cell lines, Process Biochemistry, 116 (2022) 17–25. doi:10.1016/j.procbio.2022.02.022.
  144. A.R. Gul, F. Shaheen, R. Rafique, J. Bal, S. Waseem, T.J. Park, Grass-mediated biogenic synthesis of silver nanoparticles and their drug delivery evaluation: A biocompatible anti-cancer therapy, Chemical Engineering Journal, 407 (2021) 127202. doi: 10.1016/j.cej.2020.127202.
  145. M. Shariq Ahmed, R. Soundhararajan, T. Akther, M. Kashif, J. Khan, M. Waseem, H. Srinivasan, Biogenic AgNPs synthesized via endophytic bacteria and its biological applications, Environmental Science and Pollution Research, 26 (2019) 26939–26946.
  146. S.M.A. Aziz Mousavi, S.A. Mirhosseini, M. Rastegar Shariat Panahi, H. Mahmoodzadeh Hosseini, Characterization of Biosynthesized Silver Nanoparticles Using Lactobacillus rhamnosus GG and its In Vitro Assessment Against Colorectal Cancer Cells, Probiotics Antimicrob Proteins, 12 (2020) 740–746. doi: 10.1007/s12602-019-09530-z.
  147. S. Zada, A. Ahmad, S. Khan, X. Yu, K. Chang, A. Iqbal, A. Ahmad, S. Ullah, M. Raza, A. Khan, S. Ahmad, P. Fu, Biogenic synthesis of silver nanoparticles using extracts of Leptolyngbya JSC-1 that induce apoptosis in HeLa cell line and exterminate pathogenic bacteria, Artif Cells Nanomed Biotechnol, 46 (2018) S471–S480. doi: 10.1080/21691401.2018.1499663.
  148. D. Acharya, S. Satapathy, K.K. Yadav, P. Somu, G. Mishra, Systemic Evaluation of Mechanism of Cytotoxicity in Human Colon Cancer HCT-116 Cells of Silver Nanoparticles Synthesized Using Marine Algae Ulva lactuca Extract, J Inorg Organomet Polym Mater, 32 (2022) 596–605. doi:10.21203/rs.3.rs-830011/v1.
  149. S.A. Al-Zahrani, R.S. Bhat, S.A. Al Rashed, A. Mahmood, A. Al Fahad, G. Alamro, J. Almusallam, R. Al Subki, R. Orfali, S. Al Daihan, Green-synthesized silver nanoparticles with aqueous extract of green algae Chaetomorpha ligustica and its anticancer potential, Green Processing and Synthesis, 10 (2021) 711–721. doi: 10.1515/gps-2021-0067.
  150. D. Acharya, S. Satapathy, P. Somu, & Umesh, K. Parida, G. Mishra, Apoptotic Effect and Anticancer Activity of Biosynthesized Silver Nanoparticles from Marine Algae Chaetomorpha linum Extract Against Human Colon Cancer Cell HCT-116, (2011). doi: 10.1007/s12011-020-02304-7.
  151. M. Rudrappa, R.S. Kumar, S.K. Nagaraja, H. Hiremath, P.V. Gunagambhire, A.I. Almansour, K. Perumal, S. Nayaka, Myco-Nanofabrication of Silver Nanoparticles by Penicillium brasilianum NP5 and Their Antimicrobial, Photoprotective and Anticancer Effect on MDA-MB-231 Breast Cancer Cell Line, Antibiotics, 12 (2023) 567. doi: 10.3390/antibiotics12030567.
  152. N.T. Lan Chi, G.R. Veeraragavan, K. Brindhadevi, A. Chinnathambi, S.H. Salmen, S.A. Alharbi, R. Krishnan, A. Pugazhendhi, Fungi fabrication, characterization, and anticancer activity of silver nanoparticles using metals resistant Aspergillus niger, Environ Res, 208 (2022) 112721. doi:10.1016/j.envres.2022.112721.
  153. X. Liu, J. Le Chen, W.Y. Yang, Y.C. Qian, J.Y. Pan, C.N. Zhu, L. Liu, W. Bin Ou, H.X. Zhao, D.P. Zhang, Biosynthesis of silver nanoparticles with antimicrobial and anticancer properties using two novel yeasts, Sci Rep, 11 (2021). doi: 10.1038/s41598-021-95262-6.
  154. A. Yadav, K. Kon, G. Kratosova, N. Duran, A.P. Ingle, M. Rai, Fungi as an efficient mycosystem for the synthesis of metal nanoparticles: progress and key aspects of research, Biotechnol Lett, (2015). doi:10.1007/s10529-015-1901-6.
  155. Z. Sheikhloo, M. Salouti, Intracellular Biosynthesis of Gold Nanoparticles by the Fungus Penicillium Chrysogenum, Int. J. Nanosci. Nanotechnol, (2011).
  156. M. Gericke, A. Pinches, Microbial production of gold nanoparticles, Gold Bull, (2006).doi:10.1007/BF03215529.
  157. P.K. Kar, S. Murmu, S. Saha, V. Tandon, K. Acharya, Anthelmintic efficacy of gold nanoparticles derived from a phytopathogenic fungus, Nigrospora oryzae, PLoS One, (2014). doi:10.1371/journal.pone.0084693.
  158. E. Castro-Longoria, A.R. Vilchis-Nestor, M. Avalos-Borja, Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa, Colloids Surf B Biointerfaces, (2011). doi: 10.1016/j.colsurfb.2010.10.035.
  159. U. Munawer, V.B. Raghavendra, S. Ningaraju, K.L. Krishna, A.R. Ghosh, G. Melappa, A. Pugazhendhi, Biofabrication of gold nanoparticles mediated by the endophytic Cladosporium species: Photodegradation, in vitro anticancer activity and in vivo antitumor studies, Int J Pharm, (2020). doi: 10.1016/j.ijpharm.2020.119729.
  160. H. Acay, Utilization of Morchella esculenta-mediated green synthesis golden nanoparticles in biomedicine applications, Prep Biochem Biotechnol, (2021). doi:10.1080/10826068.2020.1799390.
  161. K. Saravanakumar, A. Sathiyaseelan, A.V.A. Mariadoss, X. Hu, K. Venkatachalam, M.H. Wang, Nucleolin targeted delivery of aptamer tagged Trichoderma derived crude protein coated gold nanoparticles for improved cytotoxicity in cancer cells, Process Biochemistry, (2021). doi:10.1016/j.procbio.2021.01.022.
  162. M. Gholami-Shabani, M. Shams-Ghahfarokhi, Z. Gholami-Shabani, A. Akbarzadeh, G. Riazi, S. Ajdari, A. Amani, M. Razzaghi-Abyaneh, Enzymatic synthesis of gold nanoparticles using sulfite reductase purified from Escherichia coli: A green eco-friendly approach, Process Biochemistry, (2015). doi:10.1016/j.procbio.2015.04.004.
  163. M. Hosseini, M. Mashreghi, H. Eshghi, Biosynthesis and antibacterial activity of gold nanoparticles coated with reductase enzymes, Micro Nano Lett, (2016). doi: 10.1049/mnl.2016.0065.
  164. S. Dhandapani, X. Xu, R. Wang, A.M. Puja, H. Kim, H. Perumalsamy, S.R. Balusamy, Y.J. Kim, Biosynthesis of gold nanoparticles using Nigella sativa and Curtobacterium proimmune K3 and evaluation of their anticancer activity, Materials Science and Engineering C, (2021). doi:10.1016/j.msec.2021.112214.
  165. M. Jafari, F. Rokhbakhsh-Zamin, M. Shakibaie, M.H. Moshafi, A. Ameri, H.R. Rahimi, H. Forootanfar, Cytotoxic and antibacterial activities of biologically synthesized gold nanoparticles assisted by Micrococcus yunnanensis strain J2, Biocatal Agric Biotechnol, (2018). doi:10.1016/j.bcab.2018.06.014.
  166. R. Shunmugam, S. Renukadevi Balusamy, V. Kumar, S. Menon, T. Lakshmi, H. Perumalsamy, Biosynthesis of gold nanoparticles using marine microbe (Vibrio alginolyticus) and its anticancer and antioxidant analysis, J King Saud Univ Sci, (2021). doi: 10.1016/j.jksus.2020.101260.
  167. B. Ankamwar, Biosynthesis of gold nanoparticles (Green-Gold) using leaf extract of Terminalia Catappa, E-Journal of Chemistry, (2010). doi: 10.1155/2010/745120.
  168. J. Huang, Q. Li, D. Sun, Y. Lu, Y. Su, X. Yang, H. Wang, Y. Wang, W. Shao, N. He, J. Hong, C. Chen, Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf, Nanotechnology, (2007). doi: 10.1088/0957-4484/18/10/105104.
  169. N. Hotessa Halake, J. Muda Haro, Role of Nanobiotechnology Towards Agri-Food System, J Nanotechnol, 2022 (2022) 1–7. doi: 10.1155/2022/6108610.
  170. M. Keshavarzi, D. Davoodi, S. Pourseyedi, S. Taghizadeh, The effects of three types of alfalfa plants (Medicago sativa) on the biosynthesis of gold nanoparticles: an insight into phytomining, Gold Bull, (2018). doi: 10.1007/s13404-018-0237-0.
  171. N.M. Santos, A.S. Gomes, D.G.S.M. Cavalcante, L.F. Santos, S.R. Teixeira, F.C. Cabrera, A.E. Job, Green synthesis of colloidal gold nanoparticles using latex from Hevea brasiliensis and evaluation of their in vitro cytotoxicity and genotoxicity, IET Nanobiotechnol, (2019). doi: 10.1049/iet-nbt.2018.5225.
  172. A. Al Saqr, E.S. Khafagy, A. Alalaiwe, M.F. Aldawsari, S.M. Alshahrani, M.K. Anwer, S. Khan, A.S. Abu Lila, H.H. Arab, W.A.H. Hegazy, Synthesis of gold nanoparticles by using green machinery: Characterization and in vitro toxicity, Nanomaterials, (2021). doi: 10.3390/nano11030808.
  173. C.E.A. Botteon, L.B. Silva, G. V. Ccana-Ccapatinta, T.S. Silva, S.R. Ambrosio, R.C.S. Veneziani, J.K. Bastos, P.D. Marcato, Biosynthesis and characterization of gold nanoparticles using Brazilian red propolis and evaluation of its antimicrobial and anticancer activities, Sci Rep, (2021). doi:10.1038/s41598-021-81281-w.
  174. W. Li, R. Liu, Q. Pei, T. Shou, W. Zhang, J. Hu, Apoptotic effect of green synthesized gold nanoparticles from curcuma wenyujin extract against human renal cell carcinoma a498 cells, Int J Nanomedicine, (2019). doi: 10.2147/IJN.S203222.
  175. S. Balasubramanian, S.M.J. Kala, T.L. Pushparaj, Biogenic synthesis of gold nanoparticles using Jasminum auriculatum leaf extract and their catalytic, antimicrobial and anticancer activities, J Drug Deliv Sci Technol, (2020). doi: 10.1016/j.jddst.2020.101620.
  176. M.B. Lava, U. M. Muddapur, B. Nagaraj, Synthesis and Characterization of Gold Nanoparticles from Lobelia Nicotianifolia Leaf Extract and its Biological Activities, Adv Mater Lett, (2020). doi:10.5185/amlett.2020.031491.
  177. R.M. Yas, A. Ghafoor, A. Saeed, Anticancer Effect of Green Synthesized Gold Nanoparticles Using Orchid Extract and their Characterizations on Breast Cancer AMJ-13 Cell Line, 2021. doi:10.31838/srp.2021.2.68.
  178. B. Patra, R. Gautam, E. Priyadarsini, P. Rajamani, S.N. Pradhan, M. Saravanan, R. Meena, Piper betle: Augmented Synthesis of Gold Nanoparticles and Its In-vitro Cytotoxicity Assessment on HeLa and HEK293 Cells, J Clust Sci, (2020). doi: 10.1007/s10876-019-01625-5.
  179. S. Rajeshkumar, C. Malarkodi, G. Gnanajobitha, K. Paulkumar, M. Vanaja, C. Kannan, G. Annadurai, Seaweed-mediated synthesis of gold nanoparticles using Turbinaria conoides and its characterization, J Nanostructure Chem, (2013). doi: 10.1186/2193-8865-3-44.
  180. J. Annamalai, T. Nallamuthu, Characterization of biosynthesized gold nanoparticles from aqueous extract of Chlorella vulgaris and their anti-pathogenic properties, Applied Nanoscience (Switzerland), (2015). doi: 10.1007/s13204-014-0353-y.
  181. N. Abdel-Raouf, N.M. Al-Enazi, I.B.M. Ibraheem, Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterization of their antibacterial activity, Arabian Journal of Chemistry, (2017). doi: 10.1016/j.arabjc.2013.11.044.
  182. N. González-Ballesteros, S. Prado-López, J.B. Rodríguez-González, M. Lastra, M.C. Rodríguez-Argüelles, Green synthesis of gold nanoparticles using brown algae Cystoseira baccata: Its activity in colon cancer cells, Colloids Surf B Biointerfaces, (2017). doi: 10.1016/j.colsurfb.2017.02.020.
  183. R. Sharma, Y.S. Negi, Gold Nanoparticles: Synthesis and Effect on Viability of Human Non-Small Lung Cancer Cells, Advances in Materials Physics and Chemistry, (2021). doi:10.4236/ampc.2021.119014.
  184. S.J. Amina, M. Iqbal, A. Faisal, Z. Shoaib, M.B.K. Niazi, N.M. Ahmad, N. Khalid, H.A. Janjua, Synthesis of diosgenin conjugated gold nanoparticles using algal extract of Dictyosphaerium sp and in-vitro application of their antiproliferative activities, Mater Today Commun, (2021). doi:10.1016/j.mtcomm.2021.102360.
  185. Z. Wu, Y. Ren, Y. Liang, L. Huang, Y. Yang, A. Zafar, M. Hasan, F. Yang, X. Shu, Synthesis, Characterization, Immune Regulation, and Antioxidative Assessment of Yeast-Derived Selenium Nanoparticles in Cyclophosphamide-Induced Rats, ACS Omega, 6 (2021) 24585–24594. doi:10.1021/acsomega.1c03205.
  186. F. Luo, D. Zeng, R. Chen, A. Zafar, L. Weng, W. Wang, Y. Tian, M. Hasan, X. Shu, PEGylated dihydromyricetin-loaded nanoliposomes coated with tea saponin inhibit bacterial oxidative respiration and energy metabolism, Food Funct, 12 (2021). oi.org/10.1039/D1FO01943K
  187. G. Naz, M. Shabbir, M. Ramzan, B.U. Haq, M. Arshad, M.B. Tahir, M. Hasan, R. Ahmed, Synergistic effect of Cux/Mgx and Zn1−xO for enhanced photocatalytic degradation and antibacterial activity, Physica B Condens Matter, 624 (2022). doi: 10.1016/j.physb.2021.413396.
  188. Z. Wu, Y. Ren, Y. Liang, L. Huang, Y. Yang, A. Zafar, M. Hasan, F. Yang, X. Shu, Synthesis, Characterization, Immune Regulation, and Antioxidative Assessment of Yeast-Derived Selenium Nanoparticles in Cyclophosphamide-Induced Rats, ACS Omega, 6 (2021). doi:10.1021/acsomega.1c03205.
  189. E.A. Hasan, M.A. El-Hashash, M.K. Zahran, H.M. El-Rafie, Comparative study of chemical composition, antioxidant and anticancer activities of both Turbinaria decurrens Bory methanol extract and its biosynthesized gold nanoparticles, J Drug Deliv Sci Technol, (2022). doi:10.1016/j.jddst.2021.103005.
  190. R. Algotiml, A. Gaballa, R. Seoudi, H.H. Abulreesh, I. Ahmad, K. Elbanna, Anticancer and Antimicrobial Activity of Red Sea Seaweeds Extracts-Mediated Gold Nanoparticles, J Pure Appl Microbiol, (2022). doi: 10.22207/JPAM.16.1.11.
  191. S.S. Asl, F. Tafvizi, H. Noorbazargan, Biogenic synthesis of gold nanoparticles using Satureja rechingeri Jamzad: a potential anticancer agent against cisplatin-resistant A2780CP ovarian cancer cells, Environmental Science and Pollution Research, 30 (2023) 20168–20184. doi:10.1007/s11356-022-23507-6.
  192. S. Viswanathan, T. Palaniyandi, P. Kannaki, R. Shanmugam, G. Baskar, A.M. Rahaman, L.T.D. Paul, B.K. Rajendran, A. Sivaji, Biogenic synthesis of gold nanoparticles using red seaweed Champia parvula and its anti-oxidant and anticarcinogenic activity on lung cancer, Particulate Science and Technology, 41 (2023) 241–249. doi: 10.1080/02726351.2022.2074926.
  193. M. Shirzadi-Ahodashti, Z.M. Mizwari, S. Mohammadi-Aghdam, S. Ahmadi, M. Ali Ebrahimzadeh, S. Mortazavi-Derazkola, Optimization and evaluation of anticancer, antifungal, catalytic, and antibacterial activities: Biosynthesis of spherical-shaped gold nanoparticles using Pistacia vera hull extract (AuNPs@PV), Arabian Journal of Chemistry, 16 (2023). doi: 10.1016/j.arabjc.2022.104423.
  194. R.S. Hamida, M.A. Ali, H.E. Alfassam, M.A. Momenah, M.A. Alkhateeb, M.M. Bin-Meferij, One-Step Phytofabrication Method of Silver and Gold Nanoparticles Using Haloxylon salicornicum for Anticancer, Antimicrobial, and Antioxidant Activities, Pharmaceutics, 15 (2023). doi:10.3390/pharmaceutics15020529.
  195. P. Prema, T. Boobalan, A. Arun, K. Rameshkumar, R. Suresh Babu, V. Veeramanikandan, V.H. Nguyen, P. Balaji, Green tea extract mediated biogenic synthesis of gold nanoparticles with potent anti-proliferative effect against PC-3 human prostate cancer cells, Mater Lett, 306 (2022) 130882. doi:10.1016/j.matlet.2021.130882.
  196. S.M. Mousavi-Kouhi, A. Beyk-Khormizi, V. Mohammadzadeh, M. Ashna, A. Es-haghi, M. Mashreghi, V. Hashemzadeh, H. Mozafarri, M. Nadaf, M.E. Taghavizadeh Yazdi, Biological synthesis and characterization of gold nanoparticles using Verbascum speciosum Schrad and cytotoxicity properties toward HepG2 cancer cell line, Research on Chemical Intermediates, 48 (2022) 167–178. doi: 10.1007/s11164-021-04600-w.
  197. M. Hosny, M. Fawzy, Y.A. El-Badry, E.E. Hussein, A.S. Eltaweil, Plant-assisted synthesis of gold nanoparticles for photocatalytic, anticancer, and antioxidant applications, Journal of Saudi Chemical Society, 26 (2022) 101419. doi: 10.1016/j.jscs.2022.101419.
  198. S. Akhtar, S.M. Asiri, F.A. Khan, S.T. Gunday, A. Iqbal, N. Alrushaid, O.A. Labib, G.R. Deen, F.Z. Henari, Formulation of gold nanoparticles with hibiscus and curcumin extracts induced anti-cancer activity, Arabian Journal of Chemistry, 15 (2022) 103594. doi: 10.1016/j.arabjc.2021.103594.
  199. K.D. Datkhile, S.R. Patil, P.P. Durgawale, M.N. Patil, D.D. Hinge, N.J. Jagdale, V.N. Deshmukh, A.L. More, Biogenic synthesis of gold nanoparticles using Argemone mexicana L and their cytotoxic and genotoxic effects on human colon cancer cell line (HCT-15), Journal of Genetic Engineering and Biotechnology, 19 (2021). doi: 10.1186/s43141-020-00113-y.
  200. P. Clarance, B. Luvankar, J. Sales, A. Khusro, P. Agastian, J.C. Tack, M.M. Al Khulaifi, H.A. AL-Shwaiman, A.M. Elgorban, A. Syed, H.J. Kim, Green synthesis and characterization of gold nanoparticles using endophytic fungi Fusarium solani and its in-vitro anticancer and biomedical applications, Saudi J Biol Sci, 27 (2020) 706–712. doi: 10.1016/j.sjbs.2019.12.026.
  201. M.A. Abu-Tahon, M. Ghareib, W.E. Abdallah, Environmentally benign rapid biosynthesis of extracellular gold nanoparticles using Aspergillus flavus and their cytotoxic and catalytic activities, Process Biochemistry, 95 (2020) 1–11. doi: 10.1016/j.procbio.2020.04.015.
  202. M.D. BalaKumaran, R. Ramachandran, P. Balashanmugam, S. Jagadeeswari, P.T. Kalaichelvan, Comparative analysis of antifungal, antioxidant and cytotoxic activities of mycosynthesized silver nanoparticles and gold nanoparticles, Materials Technology, 37 (2022) 411–421. doi:10.1080/10667857.2020.1854518.
  203. U. Munawer, V.B. Raghavendra, S. Ningaraju, K.L. Krishna, A.R. Ghosh, G. Melappa, A. Pugazhendhi, Biofabrication of gold nanoparticles mediated by the endophytic Cladosporium species: Photodegradation, in vitro anticancer activity and in vivo antitumor studies, Int J Pharm, 588 (2020) 119729. doi: 10.1016/j.ijpharm.2020.119729.
  204. H. Acay, Utilization of Morchella esculenta-mediated green synthesis golden nanoparticles in biomedicine applications, Prep Biochem Biotechnol, 51 (2021) 127–136. doi:10.1080/10826068.2020.1799390.
  205. R. Shunmugam, S. Renukadevi Balusamy, V. Kumar, S. Menon, T. Lakshmi, H. Perumalsamy, Biosynthesis of gold nanoparticles using marine microbe (Vibrio alginolyticus) and its anticancer and antioxidant analysis, J King Saud Univ Sci, 33 (2021) 101260. doi:10.1016/j.jksus.2020.101260.
  206. M. Manikandakrishnan, S. Palanisamy, M. Vinosha, B. Kalanjiaraja, S. Mohandoss, R. Manikandan, M. Tabarsa, S.G. You, N.M. Prabhu, Facile green route synthesis of gold nanoparticles using Caulerpa racemosa for biomedical applications, J Drug Deliv Sci Technol, 54 (2019) 101345. doi:10.1016/j.jddst.2019.101345.
  207. M.P. Patil, M. jae Kang, I. Niyonizigiye, A. Singh, J.O. Kim, Y.B. Seo, G. Do Kim, Extracellular synthesis of gold nanoparticles using the marine bacterium Paracoccus haeundaensis BC74171T and evaluation of their antioxidant activity and antiproliferative effect on normal and cancer cell lines, Colloids Surf B Biointerfaces, 183 (2019) 110455. doi: 10.1016/j.colsurfb.2019.110455.
  208. T. Palaniyandi, S. Viswanathan, P. Prabhakaran, G. Baskar, M.R.A. Wahab, A. Sivaji, M. Ravi, B.K. Rajendran, M. Moovendhan, H. Surendran, S. Kumarasamy, Green synthesis of gold nanoparticles using Halymenia pseudofloresii extracts and their antioxidant, antimicrobial, and anti-cancer activities, Biomass Convers Biorefin, (2023). doi: 10.1007/s13399-023-03873-y.
  209. S.J. Amina, M. Iqbal, A. Faisal, Z. Shoaib, M.B.K. Niazi, N.M. Ahmad, N. Khalid, H.A. Janjua, Synthesis of diosgenin conjugated gold nanoparticles using algal extract of Dictyosphaerium sp and in-vitro application of their antiproliferative activities, Mater Today Commun, 27 (2021) 102360. doi:10.1016/j.mtcomm.2021.102360.
  210. N. González-Ballesteros, M.D. Torres, N. Flórez-Fernández, L. Diego-González, R. Simón-Vázquez, M.C. Rodríguez-Argüelles, H. Domínguez, Eco-friendly extraction of Mastocarpus stellatus carrageenan for the synthesis of gold nanoparticles with improved biological activity, Int J Biol Macromol, 183 (2021) 1436–1449. doi: 10.1016/j.ijbiomac.2021.05.115.
  211. R. Sharma, Y.S. Negi, Gold Nanoparticles: Synthesis and Effect on Viability of Human Non-Small Lung Cancer Cells, Advances in Materials Physics and Chemistry, 11 (2021) 145–153. doi:10.4236/ampc.2021.119014.
  212. H.F. Manuel Xavier, V.M. Nadar, P. Patel, D. Umapathy, A. Velanganni Joseph, S. Manivannan, P. Santhiyagu, B. Pandi, G. Muthusamy, Y. Rathinam, K. Ponnuchamy, Selective antibacterial and apoptosis-inducing effects of hybrid gold nanoparticles – A green approach, J Drug Deliv Sci Technol, 59 (2020) 101890. doi: 10.1016/j.jddst.2020.101890.
  213. B. Varghese, M. Kurian, S. Krishna, T.S. Athira, Biochemical synthesis of copper nanoparticles using Zingiber officinalis and Curcuma longa: Characterization and antibacterial activity study, in: Mater Today Proc, 2019. doi: 10.1016/j.matpr.2020.01.476.
  214. D.G. Arumugam, S. Sivaji, K.V. Dhandapani, S. Nookala, B. Ranganathan, Panchagavya mediated copper nanoparticles synthesis, characterization and evaluating cytotoxicity in brine shrimp, Biocatal Agric Biotechnol, (2019). doi:10.1016/j.bcab.2019.101132.
  215. N.A. Ismail, K. Shameli, M.M.T. Wong, S.Y. Teow, J. Chew, S.N.A.M. Sukri, Antibacterial and cytotoxic effect of honey mediated copper nanoparticles synthesized using ultrasonic assistance, Materials Science and Engineering C, (2019). doi: 10.1016/j.msec.2019.109899.
  216. S. Noor, Z. Shah, A. Javed, A. Ali, S.B. Hussain, S. Zafar, H. Ali, S.A. Muhammad, A fungal based synthesis method for copper nanoparticles with the determination of anticancer, antidiabetic and antibacterial activities, J Microbiol Methods, (2020). doi: 10.1016/j.mimet.2020.105966.
  217. M. Sriramulu, S. Shanmugam, V.K. Ponnusamy, Agaricus bisporus mediated biosynthesis of copper nanoparticles and its biological effects: An in-vitro study, Colloids and Interface Science Communications, (2020). doi: 10.1016/j.colcom.2020.100254.
  218. K. Saravanakumar, S. Shanmugam, N.B. Varukattu, D. MubarakAli, K. Kathiresan, M.H. Wang, Biosynthesis and characterization of copper oxide nanoparticles from indigenous fungi and its effect of photothermolysis on human lung carcinoma, J Photochem Photobiol B, (2019). doi:10.1016/j.jphotobiol.2018.11.017.
  219. V.M. Mani, S. Kalaivani, S. Sabarathinam, M. Vasuki, A.J.P.G. Soundari, M.P. Ayyappa Das, A. Elfasakhany, A. Pugazhendhi, Copper oxide nanoparticles synthesized from an endophytic fungus Aspergillus terreus: Bioactivity and anti-cancer evaluations, Environ Res, (2021). doi:10.1016/j.envres.2021.111502.
  220. A. Fariq, T. Khan, A. Yasmin, Microbial synthesis of nanoparticles and their potential applications in biomedicine, J Appl Biomed, (2017). doi: 10.1016/j.jab.2017.03.004.
  221. N.Q. Zhou, L.J. Tian, Y.C. Wang, D.B. Li, P.P. Li, X. Zhang, H.Q. Yu, Extracellular biosynthesis of copper sulfide nanoparticles by Shewanella oneidensis MR-1 as a photothermal agent, Enzyme Microb Technol, (2016). doi: 10.1016/j.enzmictec.2016.04.002.
  222. H. Sonbol, S. AlYahya, F. Ameen, K. Alsamhary, S. Alwakeel, S. Al-Otaibi, S. Korany, Bioinspired synthesize of CuO nanoparticles using Cylindrospermum stagnale for antibacterial, anticancer and larvicidal applications, Applied Nanoscience (Switzerland), (2021). doi: 10.1007/s13204-021-01940-2.
  223. M. Kouhkan, P. Ahangar, L.A. Babaganjeh, M. Allahyari-Devin, Biosynthesis of Copper Oxide Nanoparticles Using Lactobacillus casei Subsp Casei and its Anticancer and Antibacterial Activities, Curr Nanosci, (2019). doi: 10.2174/1573413715666190318155801.
  224. G. Naikoo, F. Al-Mashali, F. Arshad, N. AL-Maashani, I.U. Hassan, Z. AL Baraami, L.H. Faruck, A. Qurashi, W. Ahmed, A.M. Asiri, A.A. Aljabali, H.A. Bakshi, M.M. Tambuwala, An Overview of Copper Nanoparticles: Synthesis, Characterisation and Anticancer Activity, Curr Pharm Des, (2021). doi:10.2174/1381612827666210804100303.
  225. S.S. Biresaw, P. Taneja, Copper nanoparticles green synthesis and characterization as anticancer potential in breast cancer cells (MCF7) derived from Prunus nepalensis phytochemicals, Mater Today Proc, (2022). doi: 10.1016/J.MATPR.2021.07.149.
  226. M. Hasanin, M.A. Al Abboud, M.M. Alawlaqi, T.M. Abdelghany, A.H. Hashem, Ecofriendly Synthesis of Biosynthesized Copper Nanoparticles with Starch-Based Nanocomposite: Antimicrobial, Antioxidant, and Anticancer Activities, Biol Trace Elem Res, (2021). doi: 10.1007/s12011-021-02812-0.
  227. A. Yaqub, N. Malkani, A. Shabbir, S.A. Ditta, F. Tanvir, S. Ali, M. Naz, S.A.R. Kazmi, R. Ullah, Novel Biosynthesis of Copper Nanoparticles Using Zingiber and Allium sp with Synergic Effect of Doxycycline for Anticancer and Bactericidal Activity, Curr Microbiol, (2020). doi: 10.1007/s00284-020-02058-4.
  228. P. Yugandhar, T. Vasavi, P. Uma Maheswari Devi, N. Savithramma, Bioinspired green synthesis of copper oxide nanoparticles from Syzygium alternifolium (Wt) Walp: characterization and evaluation of its synergistic antimicrobial and anticancer activity, Applied Nanoscience (Switzerland), (2017). doi: 10.1007/s13204-017-0584-9.
  229. N. Ali Thamer, N. Tareq Barakat, Cytotoxic activity of green synthesis copper oxide nanoparticles using cordia myxa L aqueous extract on some breast cancer cell lines, in: J Phys Conf Ser, 2019. doi: 10.1088/1742-6596/1294/6/062104.
  230. N.M. Aboeita, S.A. Fahmy, M.M.H. El-Sayed, H.M.E.S. Azzazy, T. Shoeib, Enhanced Anticancer Activity of Nedaplatin Loaded onto Copper Nanoparticles Synthesized Using Red Algae, Pharmaceutics, (2022). doi: 10.3390/pharmaceutics14020418.
  231. S.V.P. Ramaswamy, S. Narendhran, R. Sivaraj, Potentiating effect of ecofriendly synthesis of copper oxide nanoparticles using brown alga: Antimicrobial and anticancer activities, Bulletin of Materials Science, (2016). doi: 10.1007/s12034-016-1173-3.
  232. A.R. Phull, A. Ali, K.R. Dhong, M. Zia, P.G. Mahajan, H.J. Park, Synthesis, characterization, anticancer activity assessment and apoptosis signaling of fucoidan mediated copper oxide nanoparticles, Arabian Journal of Chemistry, (2021). doi: 10.1016/j.arabjc.2021.103250.
  233. G. Kalaiyan, K.M. Prabu, N. Suresh, S. Suresh, Green synthesis of copper oxide spindle like nanostructure using Hibiscus cannabinus flower extract for antibacterial and anticancer activity applications, Results Chem, 5 (2023) 100840. doi: 10.1016/j.rechem.2023.100840.
  234. K. Ramasubbu, S. Padmanabhan, K.A. Al-Ghanim, M. Nicoletti, M. Govindarajan, N. Sachivkina, V.D. Rajeswari, Green Synthesis of Copper Oxide Nanoparticles Using Sesbania grandiflora Leaf Extract and Their Evaluation of Anti-Diabetic, Cytotoxic, Anti-Microbial, and Anti-Inflammatory Properties in an In-Vitro Approach, Fermentation, 9 (2023). doi: 10.3390/fermentation9040332.
  235. S.S. Biresaw, P. Taneja, Copper nanoparticles green synthesis and characterization as anticancer potential in breast cancer cells (MCF7) derived from Prunus nepalensis phytochemicals, Mater Today Proc, 49 (2022) 3501–3509. doi: 10.1016/J.MATPR.2021.07.149.
  236. J. Gu, A. Aidy, S. Goorani, Anti-human lung adenocarcinoma, cytotoxicity, and antioxidant potentials of copper nanoparticles green-synthesized by Calendula officinalis, J Exp Nanosci, 17 (2022) 285–296. doi: 10.1080/17458080.2022.2066082.
  237. X. Zhuang, Y. Kang, L. Zhao, S. Guo, Design and synthesis of copper nanoparticles for the treatment of human esophageal cancer: introducing a novel chemotherapeutic supplement, J Exp Nanosci, 17 (2022) 274–284. doi: 10.1080/17458080.2022.2065264.
  238. G. Rajagopal, A. Nivetha, M. Sundar, T. Panneerselvam, S. Murugesan, P. Parasuraman, S. Kumar, S. Ilango, S. Kunjiappan, Mixed phytochemicals mediated synthesis of copper nanoparticles for anticancer and larvicidal applications, Heliyon, 7 (2021) e07360. doi:10.1016/j.heliyon.2021.e07360.
  239. A. Chinnathambi, T. Awad Alahmadi, S. Ali Alharbi, Biogenesis of copper nanoparticles (Cu-NPs) using leaf extract of Allium noeanum, antioxidant and in-vitro cytotoxicity, Artif Cells Nanomed Biotechnol, 49 (2021) 500–510. doi: 10.1080/21691401.2021.1926275.
  240. V.M. Mani, S. Kalaivani, S. Sabarathinam, M. Vasuki, A.J.P.G. Soundari, M.P. Ayyappa Das, A. Elfasakhany, A. Pugazhendhi, Copper oxide nanoparticles synthesized from an endophytic fungus Aspergillus terreus: Bioactivity and anti-cancer evaluations, Environ Res, 201 (2021) 111502. doi:10.1016/j.envres.2021.111502.
  241. M. Sriramulu, S. Shanmugam, V.K. Ponnusamy, Agaricus bisporus mediated biosynthesis of copper nanoparticles and its biological effects: An in-vitro study, Colloid Interface Sci Commun, 35 (2020) 100254. doi: 10.1016/j.colcom.2020.100254.
  242. S. Noor, Z. Shah, A. Javed, A. Ali, S.B. Hussain, S. Zafar, H. Ali, S.A. Muhammad, A fungal based synthesis method for copper nanoparticles with the determination of anticancer, antidiabetic and antibacterial activities, J Microbiol Methods, 174 (2020) 105966. doi:10.1016/j.mimet.2020.105966.
  243. K. Saravanakumar, S. Shanmugam, N.B. Varukattu, D. MubarakAli, K. Kathiresan, M.H. Wang, Biosynthesis and characterization of copper oxide nanoparticles from indigenous fungi and its effect of photothermolysis on human lung carcinoma, J Photochem Photobiol B, 190 (2019) 103–109. doi: 10.1016/j.jphotobiol.2018.11.017.
  244. G.F. Galal, B.T. Abd-Elhalim, K.A. Abou-Taleb, A.A. Haroun, R.F. Gamal, Toxicity assessment of green synthesized Cu nanoparticles by cell-free extract of Pseudomonas silesiensis as antitumor cancer and antimicrobial, Annals of Agricultural Sciences, 66 (2021) 8–15..doi:10.1016/j.aoas.2021.01.006.
  245. K.M. Doman, M.M. Gharieb, A.M. Abd El-Monem, H.H. Morsi, Synthesis of silver and copper nanoparticle using Spirulina platensis and evaluation of their anticancer activity, Int J Environ Health Res, (2023). doi: 10.1080/09603123.2022.2163987.
  246. N.M. Aboeita, S.A. Fahmy, M.M.H. El-Sayed, H.M.E.S. Azzazy, T. Shoeib, Enhanced Anticancer Activity of Nedaplatin Loaded onto Copper Nanoparticles Synthesized Using Red Algae, Pharmaceutics, 14 (2022). doi: 10.3390/pharmaceutics14020418.
  247. P. Taherzadeh Soureshjani, A. Shadi, F. Mohammadsaleh, Algae-mediated route to biogenic cuprous oxide nanoparticles and spindle-like CaCO3: a comparative study, facile synthesis, and biological properties, RSC Adv, 11 (2021) 10599–10609. doi: 10.3390/pharmaceutics14020418.
  248. A.I. El-Batal, F.M. Mosalam, M.M. Ghorab, A. Hanora, A.M. Elbarbary, Antimicrobial, antioxidant and anticancer activities of zinc nanoparticles prepared by natural polysaccharides and gamma radiation, Int J Biol Macromol, (2018). doi: 10.1016/j.ijbiomac.2017.10.121.
  249. M.M. Housseiny, E.Z. Gomaa, Enhancement of antimicrobial and antitumor activities of zinc nanoparticles biosynthesized by penicillium chrysogenum AUMC 10608 using gamma radiation, Egyptian Journal of Botany, (2019). doi: 10.21608/ejbo.2019.5492.1223.
  250. K. Saravanakumar, E. Jeevithan, X. Hu, R. Chelliah, D.H. Oh, M.H. Wang, Enhanced anti-lung carcinoma and anti-biofilm activity of fungal molecules mediated biogenic zinc oxide nanoparticles conjugated with β-D-glucan from barley, J Photochem Photobiol B, (2020). doi:10.1016/j.jphotobiol.2019.111728.
  251. B. Sumanth, T.R. Lakshmeesha, M.A. Ansari, M.A. Alzohairy, A.C. Udayashankar, B. Shobha, S.R. Niranjana, C. Srinivas, A. Almatroudi, Mycogenic synthesis of extracellular zinc oxide nanoparticles from xylaria acuta and its nanoantibiotic potential, Int J Nanomedicine, (2020). doi:10.1016/j.mtchem.2021.100618B.
  252. S. Suba, S. Vijayakumar, E. Vidhya, V.N. Punitha, M. Nilavukkarasi, Microbial mediated synthesis of ZnO nanoparticles derived from Lactobacillus spp: Characterizations, antimicrobial and biocompatibility efficiencies, Sensors International, (2021). doi:10.1016/j.sintl.2021.100104.
  253. M. Ebadi, M.R. Zolfaghari, S.S. Aghaei, M. Zargar, M. Shafiei, H.S. Zahiri, K.A. Noghabi, A bio-inspired strategy for the synthesis of zinc oxide nanoparticles (ZnO NPs) using the cell extract of cyanobacterium: Nostoc sp EA03: From biological function to toxicity evaluation, RSC Adv, (2019). doi:10.1039/C9RA03962G.
  254. E. Vidhya, S. Vijayakumar, S. Prathipkumar, P.K. Praseetha, Green way biosynthesis: Characterization, antimicrobial and anticancer activity of ZnO nanoparticles, Gene Rep, (2020). doi:10.1016/j.genrep.2020.100688.
  255. S.C. Chabattula, P.K. Gupta, S.K. Tripathi, R. Gahtori, P. Padhi, S. Mahapatra, B.K. Biswal, S.K. Singh, K. Dua, J. Ruokolainen, Y.K. Mishra, N.K. Jha, D.K. Bishi, K.K. Kesari, Anticancer therapeutic efficacy of biogenic Am-ZnO nanoparticles on 2D and 3D tumor models, Mater Today Chem, (2021). doi:10.1016/j.mtchem.2021.100618.
  256. M. Ranjbar, M. Kiani, F. Khakdan, Mentha mozaffarianii mediated biogenic zinc nanoparticles target selected cancer cell lines and microbial pathogens, J Drug Deliv Sci Technol, (2020). doi:10.1016/j.jddst.2020.102042.
  257. M.A. R., G. B., M.J. Mohamed, A. G., S. N., Anticancer potential of zinc oxide nanoparticles against cervical carcinoma cells synthesized via biogenic route using aqueous extract of Gracilaria edulis, Materials Science and Engineering C, (2019). doi: 10.1016/j.msec.2019.109840.
  258. P. Bhattacharya, K. Chatterjee, S. Swarnakar, S. Banerjee, Green Synthesis of Zinc Oxide Nanoparticles via Algal Route and its Action on Cancerous Cells and Pathogenic Microbes, Advanced Nano Research, (2020). doi: 10.21467/anr.3.1.15-27.
  259. M.S. Khan, N. Altwaijry, N.R. Jabir, A.M. Alamri, M. Tarique, A.U. Khan, Potential of green-synthesized ZnO NPs against human ovarian teratocarcinoma: an in vitro study, Mol Biol Rep, (2023). doi:10.1007/s11033-023-08367-8.
  260. K.P. Greeshma, R. Thamizselvi, Experimental and theoretical approach on green synthesized zinc oxide nanoparticles from combined leaf extracts of Catharanthus roseus and Morinda Citrifolia for invitro anti-cancer studies, J Mol Liq, 351 (2022) 118636. doi:10.1016/j.molliq.2022.118636.
  261. V. Jayakar, V. Lokapur, B.R. Nityasree, R.K. Chalannavar, L.D. Lasrado, M. Shantaram, Optimization and green synthesis of zinc oxide nanoparticle using garcinia cambogia leaf and evaluation of their antioxidant and anticancer property in kidney cancer (A498) cell lines, Biomedicine (India), 41 (2021) 206–222. doi:10.51248/.v41i2.785.
  262. A. Mohammadi Shivyari, F. Tafvizi, H. Noorbazargan, Anti-cancer effects of biosynthesized zinc oxide nanoparticles using Artemisia scoparia in Huh-7 liver cancer cells, Inorganic and Nano-Metal Chemistry, 52 (2022) 375–386.
  263. F. Norouzi Jobie, M. Ranjbar, A. Hajizadeh Moghaddam, M. Kiani, Green synthesis of zinc oxide nanoparticles using Amygdalus scoparia Spach stem bark extract and their applications as an alternative antimicrobial, anticancer, and anti-diabetic agent, Advanced Powder Technology, 32 (2021) 2043–2052. doi:10.1016/j.apt.2021.04.014.
  264. E. Sarala, M. Madhukara Naik, M. Vinuth, Y. V. Rami Reddy, H.R. Sujatha, Green synthesis of Lawsonia inermis-mediated zinc ferrite nanoparticles for magnetic studies and anticancer activity against breast cancer (MCF-7) cell lines, Journal of Materials Science: Materials in Electronics, 31 (2020) 8589–8596. doi: 10.1007/s10854-020-03394-8.
  265. V.M. Mani, S. Nivetha, S. Sabarathinam, S. Barath, M.P.A. Das, S. Basha, A. Elfasakhany, A. Pugazhendhi, Multifunctionalities of mycosynthesized zinc oxide nanoparticles (ZnONPs) from Cladosporium tenuissimum FCBGr: Antimicrobial additives for paints coating, functionalized fabrics and biomedical properties, Prog Org Coat, 163 (2022) 106650. doi:10.1016/j.porgcoat.2021.106650.
  266. B. Sumanth, T.R. Lakshmeesha, M.A. Ansari, M.A. Alzohairy, A.C. Udayashankar, B. Shobha, S.R. Niranjana, C. Srinivas, A. Almatroudi, Mycogenic synthesis of extracellular zinc oxide nanoparticles from xylaria acuta and its nanoantibiotic potential, Int J Nanomedicine, 15 (2020) 8519–8536. doi:10.2147/IJN.S271743.
  267. Y. Gao, M. Arokia Vijaya Anand, V. Ramachandran, V. Karthikkumar, V. Shalini, S. Vijayalakshmi, D. Ernest, Biofabrication of Zinc Oxide Nanoparticles from Aspergillus niger, Their Antioxidant, Antimicrobial and Anticancer Activity, J Clust Sci, 30 (2019) 937–946. doi:10.1007/s10876-019-01551-6.
  268. D. El-Kahky, M. Attia, S.M. Easa, N.M. Awad, E.A. Helmy, Biosynthesized of zinc oxide nanoparticles using Aspergillus terreus and their application as antitumor and antimicrobial activity, 2019.
  269. S. Suba, S. Vijayakumar, E. Vidhya, V.N. Punitha, M. Nilavukkarasi, Microbial mediated synthesis of ZnO nanoparticles derived from Lactobacillus spp: Characterizations, antimicrobial and biocompatibility efficiencies, Sensors International, 2 (2021) 100104. doi:10.1016/j.sintl.2021.100104.
  270. M. Ebadi, M.R. Zolfaghari, S.S. Aghaei, M. Zargar, M. Shafiei, H.S. Zahiri, K.A. Noghabi, A bio-inspired strategy for the synthesis of zinc oxide nanoparticles (ZnO NPs) using the cell extract of cyanobacterium: Nostoc sp EA03: From biological function to toxicity evaluation, RSC Adv, 9 (2019) 23508–23525. doi:10.1039/C9RA03962G.
  271. P. Bhattacharya, K. Chatterjee, S. Swarnakar, S. Banerjee, Green Synthesis of Zinc Oxide Nanoparticles via Algal Route and its Action on Cancerous Cells and Pathogenic Microbes, Advanced Nano Research, 3 (2020) 15–27. doi:10.21467/anr.3.1.15-27.
  272. Z. Sanaeimehr, I. Javadi, F. Namvar, Antiangiogenic and antiapoptotic effects of green-synthesized zinc oxide nanoparticles using Sargassum muticum algae extraction, Cancer Nanotechnol, 9 (2018). doi:10.1186/s12645-018-0037-5.
  273. K. Lingaraju, R.B. Basavaraj, K. Jayanna, S.Bhavana, S. Devaraja, H.M. Kumar Swamy, G. Nagaraju, H. Nagabhushana, H. Raja Naika, Biocompatible fabrication of TiO2 nanoparticles: Antimicrobial, anticoagulant, antiplatelet, direct hemolytic and cytotoxicity properties, Inorg Chem Commun, (2021). doi:10.1016/j.inoche.2021.108505.
  274. K. Manimaran, S. Murugesan, C. Ragavendran, G. Balasubramani, D. Natarajan, A. Ganesan, P. Seedevi, Biosynthesis of TiO2 Nanoparticles Using Edible Mushroom (Pleurotus djamor) Extract: Mosquito Larvicidal, Histopathological, Antibacterial and Anticancer Effect, J Clust Sci, (2021). doi:10.1007/s10876-020-01888-3.
  275. S. Rehman, R. Farooq, R. Jermy, S.M. Asiri, V. Ravinayagam, R. Al Jindan, Z. Alsalem, M.A. Shah, Z. Reshi, H. Sabit, F.A. Khan, A wild fomes fomentarius for biomediation of one pot synthesis of titanium oxide and silver nanoparticles for antibacterial and anticancer application, Biomolecules, (2020). doi:10.3390/biom10040622.
  276. N. Wani, W. Khanday, S. Tirumale, Biosynthesis of iron oxide nanoparticles using ethyl acetate extract of Chaetomium cupreum and their anticancer activity, Matrix Science Pharma, (2020). doi:10.4103/MTSP.MTSP_6_20.
  277. S. Majeed, M. Danish, M.N. Mohamad Ibrahim, S.H. Sekeri, M.T. Ansari, A. Nanda, G. Ahmad, Bacteria Mediated Synthesis of Iron Oxide Nanoparticles and Their Antibacterial, Antioxidant, Cytocompatibility Properties, J Clust Sci, (2021). doi:10.1007/s10876-020-01876-7.
  278. R. Vigneshwaran, D. Ezhilarasan, S. Rajeshkumar, Inorganic titanium dioxide nanoparticles induces cytotoxicity in colon cancer cells, Inorg Chem Commun, (2021). doi:10.1016/j.inoche.2021.108920.
  279. E. Nourozi, B. Hosseini, R. Maleki, B. Abdollahi Mandoulakani, Iron oxide nanoparticles: a novel elicitor to enhance anticancer flavonoid production and gene expression in Dracocephalum kotschyi hairy-root cultures, J Sci Food Agric, (2019). doi:10.1002/jsfa.9921.
  280. B. Bagyalakshmi, S.L. Priyadarshini, A. Balamurugan, Anticancer Activity of Bee Venom against Lung Cancer Cell Line (A549 Cells) Enhanced by Iron Oxide Nanoparticles Synthesized from Syzygium Aromaticum, Journal of Drug Delivery and Therapeutics, (2019). doi:10.22270/jddt.v9i3-s.2983.
  281. W. Muhammad, M.A. Khan, M. Nazir, A. Siddiquah, S. Mushtaq, S.S. Hashmi, B.H. Abbasi, Papaver somniferum L mediated novel bioinspired lead oxide (PbO) and iron oxide (Fe2O3) nanoparticles: In-vitro biological applications, biocompatibility and their potential towards HepG2 cell line, Materials Science and Engineering C, (2019). doi: 10.1016/j.msec.2019.109740.
  282. M.S.H. Bhuiyan, M.Y. Miah, S.C. Paul, T. Das Aka, O. Saha, M.M. Rahaman, M.J.I. Sharif, O. Habiba, M. Ashaduzzaman, Green synthesis of iron oxide nanoparticle using Carica papaya leaf extract: application for photocatalytic degradation of remazol yellow RR dye and antibacterial activity, Heliyon, (2020). doi:10.1016/j.heliyon.2020.e04603.
  283. M. Yusefi, K. Shameli, R.R. Ali, S.W. Pang, S.Y. Teow, Evaluating Anticancer Activity of Plant-Mediated Synthesized Iron Oxide Nanoparticles Using Punica Granatum Fruit Peel Extract, J Mol Struct, (2020). doi:10.1016/j.molstruc.2019.127539.
  284. T.N. Rao, Riyazuddin, P. Babji, N. Ahmad, R.A. Khan, I. Hassan, S.A. Shahzad, F.M. Husain, Green synthesis and structural classification of Acacia nilotica mediated-silver doped titanium oxide (Ag/TiO2) spherical nanoparticles: Assessment of its antimicrobial and anticancer activity, Saudi J Biol Sci, (2019). doi: 10.1016/j.sjbs.2019.09.005.
  285. J. Violet Mary, C. Pragathiswaran, N. Anusuya, Photocatalytic, degradation, sensing of Pb2+ using titanium nanoparticles synthesized via plant extract of Cissusquadrangularis: In-vitroanalysis of microbial and anti-cancer activities, J Mol Struct, (2021). doi:10.1016/j.molstruc.2021.130144.
  286. M. Narayanan, P. Vigneshwari, D. Natarajan, S. Kandasamy, M. Alsehli, A. Elfasakhany, A. Pugazhendhi, Synthesis and characterization of TiO2 NPs by aqueous leaf extract of Coleus aromaticus and assess their antibacterial, larvicidal, and anticancer potential, Environ Res, (2021). doi:10.1016/j.envres.2021.111335.
  287. R. Aswini, S. Murugesan, K. Kannan, Bio-engineered TiO2 nanoparticles using Ledebouria revoluta extract: Larvicidal, histopathological, antibacterial and anticancer activity, Int J Environ Anal Chem, (2021). doi: 10.1080/03067319.2020.1718668.
  288. S. Venkateswarlu, B. Natesh Kumar, B. Prathima, K. Anitha, N.V.V. Jyothi, A novel green synthesis of Fe3O4-Ag core shell recyclable nanoparticles using Vitis vinifera stem extract and its enhanced antibacterial performance, Physica B Condens Matter, (2015). doi:10.1016/j.physb.2014.09.007.
  289. A. Salehzadeh, A.S. Naeemi, L. Khaknezhad, Z. Moradi-Shoeili, S.A.S. Shandiz, Fe3O4/Ag nanocomposite biosynthesised using Spirulina platensis extract and its enhanced anticancer efficiency, IET Nanobiotechnol, (2019). doi:10.1049/iet-nbt.2018.5364.
  290. F. Namvar, H.S. Rahman, R. Mohamad, J. Baharara, M. Mahdavi, E. Amini, M.S. Chartrand, S.K. Yeap, Cytotoxic effect of magnetic iron oxide nanoparticles synthesized via seaweed aqueous extract, Int J Nanomedicine, (2014). doi: 10.2147/IJN.S59661.
  291. A. Zafar, M. Jabbar, Y. Manzoor, H. Gulzar, S.G. Hassan, M.A. Nazir, Ain-ul-Haq, G. Mustafa, R. Sahar, A. Masood, A. Iqbal, M. Hussain, M. Hasan, Quantifying Serum Derived Differential Expressed and Low Molecular Weight Protein in Breast Cancer patients, Protein Pept Lett, (2020). doi:10.2174/0929866527666200110155609.
  292. T. Palaniyandi, G. Baskar, V. Bhagyalakshmi, S. Viswanathan, M.R. Abdul Wahab, M.K. Govindaraj, A. Sivaji, B.K. Rajendran, S. Kaliamoorthy, Biosynthesis of iron nanoparticles using brown algae Spatoglossum asperum and its antioxidant and anticancer activities through in vitro and in silico studies, Particulate Science and Technology, (2023). doi:10.1080/02726351.2022.2159900.
  293. M.S.H. Bhuiyan, M.Y. Miah, S.C. Paul, T. Das Aka, O. Saha, M.M. Rahaman, M.J.I. Sharif, O. Habiba, M. Ashaduzzaman, Green synthesis of iron oxide nanoparticle using Carica papaya leaf extract: application for photocatalytic degradation of remazol yellow RR dye and antibacterial activity, Heliyon, 6 (2020) e04603. doi:10.1016/j.heliyon.2020.e04603.
  294. S. Rehman, R. Farooq, R. Jermy, S.M. Asiri, V. Ravinayagam, R. Al Jindan, Z. Alsalem, M.A. Shah, Z. Reshi, H. Sabit, F.A. Khan, A wild fomes fomentarius for biomediation of one pot synthesis of titanium oxide and silver nanoparticles for antibacterial and anticancer application, Biomolecules, 10 (2020). doi:10.3390/biom10040622.
  295. W. Muhammad, M.A. Khan, M. Nazir, A. Siddiquah, S. Mushtaq, S.S. Hashmi, B.H. Abbasi, Papaver somniferum L mediated novel bioinspired lead oxide (PbO) and iron oxide (Fe2O3) nanoparticles: In-vitro biological applications, biocompatibility and their potential towards HepG2 cell line, Materials Science and Engineering: C, 103 (2019) 109740. doi:10.1016/j.msec.2019.109740.
  296. G.M. Sulaiman, A.T. Tawfeeq, A.S. Naji, Biosynthesis, characterization of magnetic iron oxide nanoparticles and evaluations of the cytotoxicity and DNA damage of human breast carcinoma cell lines, Artif Cells Nanomed Biotechnol, 46 (2018) 1215–1229. doi:10.1080/21691401.2017.1366335.
  297. D. Hassan, A.T. Khalil, J. Saleem, A. Diallo, S. Khamlich, Z.K. Shinwari, M. Maaza, Biosynthesis of pure hematite phase magnetic iron oxide nanoparticles using floral extracts of Callistemon viminalis (bottlebrush): their physical properties and novel biological applications, Artif Cells Nanomed Biotechnol, 46 (2018) 693–707. doi:10.1080/21691401.2018.1434534.
  298. G. Caliskan, T. Mutaf, H.C. Agba, M. Elibol, Green Synthesis and Characterization of Titanium Nanoparticles Using Microalga, Phaeodactylum tricornutum, Geomicrobiol J, (2022). doi:10.1080/01490451.2021.2008549.
  299. K. Shivaji, S. Mani, P. Ponmurugan, C.S. De Castro, M. Lloyd Davies, M.G. Balasubramanian, S. Pitchaimuthu, Green-Synthesis-Derived CdS Quantum Dots Using Tea Leaf Extract: Antimicrobial, Bioimaging, and Therapeutic Applications in Lung Cancer Cells, ACS Appl Nano Mater, (2018). doi:10.1021/acsanm.8b00147.
  300. S.A. Kumar, A.A. Ansary, A. Abroad, M.I. Khan, Extracellular biosynthesis of CdSe quantum dots by the fungus, Fusarium oxysporum, J Biomed Nanotechnol, (2007)..doi: 10.1166/jbn.2007.027.
  301. P. Williams, E. Keshavarz-Moore, P. Dunnill, Schizosaccharomyces pombe fed-batch culture in the presence of cadmium for the production of cadmium sulphide quantum semiconductor dots, in: Enzyme Microb Technol, 2002. doi:10.1016/S0141-0229(01)00508-7.
  302. G. Chen, B. Yi, G. Zeng, Q. Niu, M. Yan, A. Chen, J. Du, J. Huang, Q. Zhang, Facile green extracellular biosynthesis of CdS quantum dots by white rot fungus Phanerochaete chrysosporium, Colloids Surf B Biointerfaces, (2014). doi: 10.1016/j.colsurfb.2014.02.027.
  303. C. Shi, H. Qi, R. Ma, Z. Sun, L. Xiao, G. Wei, Z. Huang, S. Liu, J. Li, M. Dong, J. Fan, Z. Guo, N, S-self-doped carbon quantum dots from fungus fibers for sensing tetracyclines and for bioimaging cancer cells, Materials Science and Engineering C, (2019). doi:10.1016/j.msec.2019.110132.
  304. C. Shi, H. Qi, R. Ma, Z. Sun, L. Xiao, G. Wei, Z. Huang, S. Liu, J. Li, M. Dong, J. Fan, Z. Guo, N, S-self-doped carbon quantum dots from fungus fibers for sensing tetracyclines and for bioimaging cancer cells, Materials Science and Engineering C, (2019). doi: 10.1016/j.msec.2019.110132.
  305. M. Kominkova, V. Milosavljevic, P. Vitek, H. Polanska, K. Cihalova, S. Dostalova, V. Hynstova, R. Guran, P. Kopel, L. Richtera, M. Masarik, M. Brtnicky, J. Kynicky, O. Zitka, V. Adam, Comparative study on toxicity of extracellularly biosynthesized and laboratory synthesized CdTe quantum dots, J Biotechnol, (2017). doi:10.1016/j.jbiotec.2016.10.024.
  306. K. Shivaji, S. Mani, P. Ponmurugan, C.S. De Castro, M. Lloyd Davies, M.G. Balasubramanian, S. Pitchaimuthu, Green-Synthesis-Derived CdS Quantum Dots Using Tea Leaf Extract: Antimicrobial, Bioimaging, and Therapeutic Applications in Lung Cancer Cells, ACS Appl Nano Mater, (2018)..doi:10.1021/acsanm.8b00147.
  307. Z. Gholami, M. Dadmehr, N. Babaeian Jelodar, M. Hosseini, F. Oroojalian, A. Pakdin Parizi, One-pot biosynthesis of CdS quantum dots through in vitro regeneration of hairy roots of Rhaphanus sativus L And their apoptosis effect on MCF-7 and AGS cancerous human cell lines, Mater Res Express, (2020). doi:10.1088/2053-1591/ab66ea.