Journal Browser
Journal Insights

Frequency: Half-yearly                    

Time to first decision: 2.4 Weeks

Submission to publication: 4 Weeks        

Acceptance rate: 26%

ISSN:  2972-3418

Open Access Review

Application of nanodrugs in the treatment of cardiovascular diseases

by Qiang Xie a,1 orcid Hongmei Yang b,1 orcid  and  Wenjie Shi c,* orcid
a
Department of Vascular Interventional Radiology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong, China, 510630
b
Department of Biological Engineering and Chemistry, and Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
c
Molecular and Experimental Surgery, University Clinic for General-, Visceral-, Vascular and Trans-Plantation Surgery, Medical Faculty University Hospital Magdeburg, Otto-von Guericke University, 39120 Magdeburg, Germany
*
Author to whom correspondence should be addressed.
BAB  2023, 8; 2(1), 8; https://doi.org/10.58567/bab02010003
Received: 5 July 2023 / Accepted: 14 July 2023 / Published: 17 July 2023

Abstract

Cardiovascular disease is still a disease with high incidence rate and mortality. Although advanced technology continues to increase our understanding of cardiovascular disease, its diagnosis and treatment still have limitations. As an emerging interdisciplinary method, nanotechnology has shown enormous clinical application potential. Nanomaterials have unique physical and chemical properties, which help to improve the sensitivity and specificity of biosensor technology and molecular imaging technology in the diagnosis of cardiovascular diseases. This paper first summarizes the versatility of nanomaterials, the physicochemical adjustability of biomolecular engineering, the design strategy of nanoparticles in cardio cerebral Vascular disease, the application of nanomaterials in the diagnosis and treatment of common cardiovascular diseases, and the use of nanomaterials can significantly improve the diagnostic sensitivity, specificity and therapeutic effect. Subsequently, the article summarized various nanomaterials. Finally, the article demonstrated the potential of the antioxidant/anti-inflammatory and photoelectric/photothermal properties of nanomaterials to be directly applied to the treatment of cardiovascular diseases.


Copyright: © 2023 by Xie, Yang and Shi. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) (Creative Commons Attribution 4.0 International License). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Show Figures

Share and Cite

ACS Style
Xie, Q.; Yang, H.; Shi, W. Application of nanodrugs in the treatment of cardiovascular diseases. Biomaterials and Biosensors, 2023, 2, 8. https://doi.org/10.58567/bab02010003
AMA Style
Xie Q, Yang H, Shi W. Application of nanodrugs in the treatment of cardiovascular diseases. Biomaterials and Biosensors; 2023, 2(1):8. https://doi.org/10.58567/bab02010003
Chicago/Turabian Style
Xie, Qiang; Yang, Hongmei; Shi, Wenjie 2023. "Application of nanodrugs in the treatment of cardiovascular diseases" Biomaterials and Biosensors 2, no.1:8. https://doi.org/10.58567/bab02010003
APA style
Xie, Q., Yang, H., & Shi, W. (2023). Application of nanodrugs in the treatment of cardiovascular diseases. Biomaterials and Biosensors, 2(1), 8. https://doi.org/10.58567/bab02010003

Article Metrics

Article Access Statistics

References

  1. Wong IY, Bhatia SN, Toner M. Nanotechnology: emerging tools for biology and medicine [J].Genes Dev, 2013, 27(22): 2397-2408. http://genesdev.cshlp.org/content/27/22/2397
  2. Karimi M, Zare H, Bakhshian NA, et al. Nanotechnology in diagnosis and treatment of coronary artery disease[J].Nanomedicine( Lond) , 2016, 11( 5) : 513-530.https://doi.org/10.2217/nnm.16.3
  3. Ambesh P, Campia U, Obiagwu C, et al. Nanomedicine in coronary artery disease [J].Indian Heart J, 2017, 69( 2) : 244-251. https://doi.org/10.1016/j.ihj.2017.02.007
  4. Peters D, Kastantin M, Kotamraju V, et al. Targeting atherosclerosis by using modular, multifunctional micelles [J]. Proc Natl Acad Sci U S A, 2009, 106 (24): 9815-9819. https://doi.org/10.1073/pnas.0903369106
  5. Cyrus T, Wickline SA, Lanza GM. Nanotechnology in interventional cardiology [J].Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2012, 4(1): 82-95. https://doi.org/10.1002/wnan.154
  6. Tsukie N, Nakano K, Matoba T, et al. Pitavastatin-incorporated nanoparticle-eluting stents attenuate in-stent stenosis without delayed endothelial healing effects in a porcine coronary artery model[J].J Atheroscler Thromb, 2013, 20( 1) : 32-45. http://dx.doi.org/10.5551/jat.13862
  7. Madhurantakam S, Babu KJ, Rayappan JBB, et al. Nanotechnology-based electrochemical detection strategies for hypertension markers[J].Biosens Bioelectron, 2018, 116: 67-80. https://doi.org/10.1016/j.bios.2018.05.034
  8. Sun B, Gou Y, Ma Y, et al. Investigate electrochemical immunosensor of cortisol based on gold nanoparticles /magnetic functionalized reduced graphene oxide [J].Biosens Bioelectron, 2017, 88: 55-62. https://doi.org/10.1016/j.bios.2016.07.047
  9. Alam T, Khan S, Gaba B, et al. Nanocarriers as treatment modalities for hypertension[J].Drug Deliv, 2017, 24( 1) : 358-369. https://doi.org/10.1080/10717544.2016.1255999
  10. Li, L.; Chen, C.; Liu, H.; Fu, C.; Tan, L.; Wang, S.; Fu, S.; Liu, X.; Meng, X.; Liu, H. Multifunctional Carbon-Silica Nanocapsules with Gold Core for Synergistic Photothermal and Chemo-Cancer Therapy under the Guidance of Bimodal Imaging. Adv. Funct. Mater. 2016, 26, 4252-4261. https://doi.org/10.1002/adfm.201600985
  11. Song, Y. Y.; Li, C.; Yang, X. Q.; An, J.; Cheng, K.; Xuan, Y.; Shi, X. M.; Gao, M. J.; Song, X. L.; Zhao, Y. D.; Chen, W. Graphene oxide coating core-shell silver sulfide@mesoporous silica for active targeted dual-mode imaging and chemo-photothermal synergistic therapy against tumors. J Mater Chem B 2018, 6, 4808-4820.http://dx.doi.org/10.1039/c8tb00940f
  12. Durgadas, C. V.; Sreenivasan, K.; Sharma, C. P. Bright blue emitting CuSe/ZnS/silica core/shell/shell quantum dots and their biocompatibility. Biomaterials 2012, 33, 6420-6429.https://doi.org/10.1016/j.biomaterials.2012.05.051
  13. Ma, B.; Wang, S.; Liu, F.; Zhang, S.; Duan, J.; Li, Z.; Kong, Y.; Sang, Y.; Liu, H.; Bu, W.; Li, L. Self-Assembled Copper-Amino Acid Nanoparticles for in Situ Glutathione "AND" H2O2 Sequentially Triggered Chemodynamic Therapy. J. Am. Chem. Soc. 2019, 141, 849-857.https://doi.org/10.1021/jacs.8b08714
  14. Li, L.; Guan, Y.; Liu, H.; Hao, N.; Liu, T.; Meng, X.; Fu, C.; Li, Y.; Qu, Q.; Zhang, Y.; Ji, S.; Chen, L.; Chen, D.; Tang, F. Silica nanorattle-doxorubicin-anchored mesenchymal stem cells for tumor-tropic therapy. ACS Nano 2011, 5, 7462-70.https://doi.org/10.1021/nn202399w
  15. Zhang, Y.; Zhao, N.; Qin, Y.; Wu, F.; Xu, Z.; Lan, T.; Cheng, Z.; Zhao, P.; Liu, H. Affibody-functionalized Ag2S quantum dots for photoacoustic imaging of epidermal growth factor receptor overexpressed tumors. Nanoscale 2018, 10, 16581-16590.http://pubs.rsc.org/en/content/articlepdf/2018/NR/C8NR02556H
  16. Meng, Z.; Wei, F.; Ma, W.; Yu, N.; Wei, P.; Wang, Z.; Tang, Y.; Chen, Z.; Wang, H.; Zhu, M. Design and Synthesis of “All-in-One” Multifunctional FeS2Nanoparticles for Magnetic Resonance and Near-Infrared Imaging Guided Photothermal Therapy of Tumors. Advanced Functional Materials 2016, 26, 8231-8242.https://onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.201603776
  17. Zhang, Y.; Zhang, Y.; Hong, G.; He, W.; Zhou, K.; Yang, K.; Li, F.; Chen, G.; Liu, Z.; Dai, H.; Wang, Q. Biodistribution, pharmacokinetics and toxicology of Ag2S near-infrared quantum dots in mice. Biomaterials 2013, 34, 3639-46.https://doi.org/10.1016/j.biomaterials.2013.01.089
  18. Qu, A.; Xu, L.; Sun, M.; Liu, L.; Kuang, H.; Xu, C. Photoactive Hybrid AuNR-Pt@Ag2S Core-Satellite Nanostructures for Near-Infrared Quantitive Cell Imaging. Advanced Functional Materials 2017, 27.https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201703408
  19. Yang, T.; Tang, Y.; Liu, L.; Lv, X.; Wang, Q.; Ke, H.; Deng, Y.; Yang, H.; Yang, X.; Liu, G.; Zhao, Y.; Chen, H. Size-Dependent Ag2S Nanodots for Second Near-Infrared Fluorescence/Photoacoustics Imaging and Simultaneous Photothermal Therapy. ACS Nano 2017, 11, 1848-1857.https://doi.org/10.1021/acsnano.6b07866
  20. Wang, G.; Liu, J.; Zhu, L.; Ma, X.; Wang, X.; Yang, X.; Guo, Y.; Yang, L.; Lu, J. Self-Destruction of Cancer Induced by Ag2 S Amorphous Nanodots. Small 2019, 15, e1902945.https://onlinelibrary.wiley.com/doi/pdf/10.1002/smll.201902945
  21. Liu, T.; Chao, Y.; Gao, M.; Liang, C.; Chen, Q.; Song, G.; Cheng, L.; Liu, Z. Ultra-small MoS2 nanodots with rapid body clearance for photothermal cancer therapy. Nano Research 2016, 9, 3003-3017.https://doi.org/10.1007/s12274-016-1183-x
  22. Meng, X.; Liu, Z.; Cao, Y.; Dai, W.; Zhang, K.; Dong, H.; Feng, X.; Zhang, X. Fabricating Aptamer-Conjugated PEGylated-MoS2/Cu1.8S Theranostic Nanoplatform for Multiplexed Imaging Diagnosis and Chemo-Photothermal Therapy of Cancer. Advanced Functional Materials 2017, 27. http://onlinelibrary.wiley.com/wol1/doi/10.1002/adfm.201605592
  23. Wang, S.; Chen, Y.; Li, X.; Gao, W.; Zhang, L.; Liu, J.; Zheng, Y.; Chen, H.; Shi, J. Injectable 2D MoS2 -Integrated Drug Delivering Implant for Highly Efficient NIR-Triggered Synergistic Tumor Hyperthermia. Adv Mater 2015, 27, 7117-22.http://onlinelibrary.wiley.com/wol1/doi/10.1002/adma.201503869
  24. Chang, M.; Wang, M.; Wang, M.; Shu, M.; Ding, B.; Li, C.; Pang, M.; Cui, S.; Hou, Z.; Lin, J. A Multifunctional Cascade Bioreactor Based on Hollow‐Structured Cu2MoS4 for Synergetic Cancer Chemo‐Dynamic Therapy/Starvation Therapy /Phototherapy / Immunotherapy with Remarkably Enhanced Efficacy. Adv. Mater. 2019, 31.https://onlinelibrary.wiley.com/doi/pdf/10.1002/adma.201905271
  25. Goel, S.; Ferreira, C. A.; Chen, F.; Ellison, P. A.; Siamof, C. M.; Barnhart, T. E.; Cai, W. Activatable Hybrid Nanotheranostics for Tetramodal Imaging and Synergistic Photothermal/Photodynamic Therapy. Adv Mater 2018, 30.https://doi.org/10.1002/adma.201704367
  26. Gu, X.; Qiu, Y.; Lin, M.; Cui, K.; Chen, G.; Chen, Y.; Fan, C.; Zhang, Y.; Xu, L.; Chen, H.; Wan, J. B.; Lu, W.; Xiao, Z. CuS Nanoparticles as a Photodynamic Nanoswitch for Abrogating Bypass Signaling To Overcome Gefitinib Resistance. Nano Lett 2019, 19, 3344-3352.https://doi.org/10.1021/acs.nanolett.9b01065
  27. Wu, Z.-C.; Li, W.-P.; Luo, C.-H.; Su, C.-H.; Yeh, C.-S. Rattle-Type Fe3O4@CuS Developed to Conduct Magnetically Guided Photoinduced Hyperthermia at First and Second NIR Biological Windows. Advanced Functional Materials 2015, 25, 6527-6537.http://onlinelibrary.wiley.com/wol1/doi/10.1002/adfm.201503015
  28. Liang, S.; Deng, X.; Chang, Y.; Sun, C.; Shao, S.; Xie, Z.; Xiao, X.; Ma, P.; Zhang, H.; Cheng, Z.; Lin, J. Intelligent Hollow Pt-CuS Janus Architecture for Synergistic Catalysis-Enhanced Sonodynamic and Photothermal Cancer Therapy. Nano Lett 2019, 19, 4134-4145. https://doi.org/10.1021/acs.nanolett.9b01595
  29. Hu, R.; Fang, Y.; Huo, M.; Yao, H.; Wang, C.; Chen, Y.; Wu, R. Ultrasmall Cu2-xS nanodots as photothermal-enhanced Fenton nanocatalysts for synergistic tumor therapy at NIR-II biowindow. Biomaterials 2019, 206, 101-114.https://doi.org/10.1016/j.biomaterials.2019.03.014
  30. Liu, Y.; Zhen, W.; Wang, Y.; Liu, J.; Jin, L.; Zhang, T.; Zhang, S.; Zhao, Y.; Yin, N.; Niu, R.; Song, S.; Zhang, L.; Zhang, H. Double Switch Biodegradable Porous Hollow Trinickel Monophosphide Nanospheres for Multimodal Imaging Guided Photothermal Therapy. Nano Lett 2019, 19, 5093-5101.https://doi.org/10.1021/acs.nanolett.9b01370
  31. Qin, M. Y.; Yang, X. Q.; Wang, K.; Zhang, X. S.; Song, J. T.; Yao, M. H.; Yan, D. M.; Liu, B.; Zhao, Y. D. In vivo cancer targeting and fluorescence-CT dual-mode imaging with nanoprobes based on silver sulfide quantum dots and iodinated oil. Nanoscale 2015, 7, 19484-92.https://doi.org/10.1039/c5nr05620a
  32. Liu, T.; Wang, C.; Gu, X.; Gong, H.; Cheng, L.; Shi, X.; Feng, L.; Sun, B.; Liu, Z. Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer. Adv Mater 2014, 26, 3433-40.https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201305256
  33. Chen, J.; Zhao, X.; Tan, S. J.; Xu, H.; Wu, B.; Liu, B.; Fu, D.; Fu, W.; Geng, D.; Liu, Y.; Liu, W.; Tang, W.; Li, L.; Zhou, W.; Sum, T. C.; Loh, K. P. Chemical Vapor Deposition of Large-Size Monolayer MoSe2 Crystals on Molten Glass. J Am Chem Soc 2017, 139, 1073-1076.https://doi.org/10.1021/jacs.6b12156
  34. Wu, S.; Liu, X.; Ren, J.; Qu, X. Glutathione Depletion in a Benign Manner by MoS2 -Based Nanoflowers for Enhanced Hypoxia-Irrelevant Free-Radical-Based Cancer Therapy. Small 2019, 15, e1904870.https://onlinelibrary.wiley.com/doi/pdf/10.1002/smll.201904870
  35. Tan, L.; Wang, S.; Xu, K.; Liu, T.; Liang, P.; Niu, M.; Fu, C.; Shao, H.; Yu, J.; Ma, T.; Ren, X.; Li, H.; Dou, J.; Ren, J.; Meng, X. Layered MoS2 Hollow Spheres for Highly-Efficient Photothermal Therapy of Rabbit Liver Orthotopic Transplantation Tumors. Small 2016, 12, 2046-55. http://onlinelibrary.wiley.com/wol1/doi/10.1002/smll.201600191
  36. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-9.https://doi.org/10.1126/science.1102896
  37. Xing, T.; Mateti, S.; Li, L. H.; Ma, F.; Du, A.; Gogotsi, Y.; Chen, Y. Gas Protection of Two-Dimensional Nanomaterials from High-Energy Impacts. Sci Rep 2016, 6, 35532.https://www.nature.com/articles/srep35532
  38. Coleman, J. N.; Lotya, M.; O'Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J.; Shvets, I. V.; Arora, S. K.; Stanton, G.; Kim, H. Y.; Lee, K.; Kim, G. T.; Duesberg, G. S.; Hallam, T.; Boland, J. J.; Wang, J. J.; Donegan, J. F.; Grunlan, J. C.; Moriarty, G.; Shmeliov, A.; Nicholls, R. J.; Perkins, J. M.; Grieveson, E. M.; Theuwissen, K.; McComb, D. W.; Nellist, P. D.; Nicolosi, V. Two-dimensional nanosheets produced by liquid exfoliation of layered mate
  39. Yin, W.; Yan, L.; Yu, J.; Tian, G.; Zhou, L.; Zheng, X.; Zhang, X.; Yong, Y.; Li, J.; Gu, Z.; Zhao, Y. High-throughput synthesis of single-layer MoS2 nanosheets as a near-infrared photothermal-triggered drug delivery for effective cancer therapy. ACS Nano 2014, 8, 6922-33.https://doi.org/10.1021/nn501647j
  40. Lee, Y. H.; Zhang, X. Q.; Zhang, W.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T.; Chang, C. S.; Li, L. J.; Lin, T. W. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv Mater 2012, 24, 2320-5.https://doi.org/10.1016/j.matlet.2015.12.068
  41. Cai, Z.; Shen, T.; Zhu, Q.; Feng, S.; Yu, Q.; Liu, J.; Tang, L.; Zhao, Y.; Wang, J.; Liu, B.; Cheng, H. M. Dual-Additive Assisted Chemical Vapor Deposition for the Growth of Mn-Doped 2D MoS2 with Tunable Electronic Properties. Small 2020, 16, e1903181.https://doi.org/10.1002/smll.201903181
  42. Qian, X.; Shen, S.; Liu, T.; Cheng, L.; Liu, Z. Two-dimensional TiS(2) nanosheets for in vivo photoacoustic imaging and photothermal cancer therapy. Nanoscale 2015, 7, 6380-7.https://doi.org/10.1039/c5nr00893j
  43. Wang, S.; Li, K.; Chen, Y.; Chen, H.; Ma, M.; Feng, J.; Zhao, Q.; Shi, J. Biocompatible PEGylated MoS2 nanosheets: controllable bottom-up synthesis and highly efficient photothermal regression of tumor. Biomaterials 2015, 39, 206-17.https://doi.org/10.1016/j.biomaterials.2014.11.009
  44. Cheng Z, Al Zaki A, Hui JZ, et al. Multifunctional nanoparticles:cost versus benefit of adding targeting and imaging capabilities[J]. Science, 2012, 338( 6109) : 903-910.https://www.sciencedirect.com/science/article/pii/B9780128217122000049
  45. Kim B,Rutka JT,Chan WC. Nanomedicine[J]. N Engl J Med, 2010 (363): 2 434-443.https://doi.org/10.1056/nejmra0912273
  46. Allen TM, Cullis PR. Drug delivery systems: entering the mainstream [J]. Science, 2004, 303(5665): 1 818-822.https://doi.org/10.1126/science.1095833
  47. Wilczewska AZ, Niemirowicz K,Markiewicz KH,et al.Nanoparticles as drug delivery systems [J]. Pharmacol Rep, 2012, 64(5): 1 020-037. https://doi.org/10.1016/s1734-1140(12)70901-5
  48. Cabrales P, Han G, Roche C, et al. Sustained release nitric oxide from long-lived circulating nanoparticles [J]. Free Radic Biol Med, 2010, 49(4):530-538.https://doi.org/10.1016/j.freeradbiomed.2010.04.034
  49. Sharma M, Sharma R, Jain DK. Nanotechnology based approaches for enhancing oral bioavailability of poorly water soluble antihypertensive drugs [J]. Scientifica (Cairo), 2016, 2016:8525679. https://doi.org/10.1155/2016/8525679
  50. Yongjun Q, Huanzhang S, Wenxia Z, et al. From changes in local RAAS to struc-tural remodeling of the left atrium:a beautiful cycle in atrial fibrillation[J]. Herz, 2015, 40(3):514-520.http://link.springer.com/content/pdf/10.1007/s00059-013-4032-7
  51. Lu Z, Scherlag BJ, Lin J, et al. Autonomic mechanism for initiation of rapid firing from atria and pulmonary veins:evidence by ablation of ganglionated plexi[J]. Cardiovasc Res, 2009, 84(2):245-252.https://doi.org/10.1093/cvr/cvp194
  52. Yu L, Scherlag BJ, Dormer K, et al. Autonomic denervation with magnetic nanop-articles[J]. Circulation, 2010, 122(25):2653-2659. https://www.ahajournals.org/doi/full/10.1161/CIRCULATIONAHA.110.940288
  53. Madigan M, Atoui R. Therapeutic use of stem cells for myocardial infarction[J]. Bioengineering (Basel), 2018, 5(2):28. http://dx.doi.org/10.3390/bioengineering5020028
  54. Zhu K, Li J, Wang Y, et al. Nanoparticles-assisted stem cell therapy for ischemic heart disease[J]. Stem Cells Int, 2016, 2016:1384658.https://doi.org/10.1155/2016/1384658
  55. Binsalamah ZM, Paul A, Khan AA, et al. Intramyocardial sustained delivery of placental growth factor using nanoparticles as a vehicle for delivery in the rat in-farct model[J]. Int J Nanomedicine, 2011, 6:2667-2678. https://doi.org/10.2147/ijn.s25175
  56. Nakano Y, Matoba T, Tokutome M, et al. Nanoparticle-mediated delivery of irbe-sartan induces cardioprotection from myocardial ischemia-reperfusion injury by antagonizing monocyte-mediated inflammation[J]. Sci Rep, 2016, 6:29601.https://doi.org/10.1038/srep29601
  57. Galagudza M, Korolev D, Postnov V, et al. Passive targeting of ischemic-reper-fused myocardium with adenosine-loaded silica nanoparticles. Int J Nano-medicine, 2012, 7:1671-1678. https://doi.org/10.2147/IJN.S29511
  58. Torchilin VP. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery[J]. Nat Rev Drug Discov, 2014, 13(11):813-827. https://doi.org/10.2147/ijn.s29511
  59. Chaudhary MA, Guo LW, Shi X, et al. Periadventitial drug delivery for the pre-vention of intimal hyperplasia following open surgery[J]. J Control Release, 2016, 233:174-180.https://doi.org/10.1016/j.jconrel.2016.05.002
  60. Amezcua R, Shirolkar A, Fraze C, et al. Nanomaterials for cardiac myocyte tissue engineering[J]. Nanomaterials(Basel), 2016, 6(7):133. https://doi.org/10.3390/nano6070133
  61. Kim DH, Kim P, Song I, et al. Guided three-dimensional growth of functional car- diomyocytes on polyethylene glycol nanostructures[J]. Langmuir, 2006, 22(12):5419-5426.https://doi.org/10.1021/la060283u
  62. Malki M, Fleischer S, Shapira A, et al. Gold nanorod-based engineered cardiac patch for suture-free engraftment by near IR[J]. Nano Lett, 2018, 18(7):4069-4073.https://doi.org/10.1021/acs.nanolett.7b04924
  63. Singelyn J, DeQuach J, Seif-Naraghi S, et al. Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering[J]. Biomaterials, 2009, 30(29):5409-5416.https://doi.org/10.1016/j.biomaterials.2009.06.045
  64. Hernandez MJ, Christman KL. Designing acellular injectable biomaterial thera-peutics for treating myocardial infarction and peripheral artery disease[J]. JACC Basic Transl Sci, 2017, 2(2):212-226. https://doi.org/10.1016/j.jacbts.2016.11.008
  65. Evans B, Hocking K, Osgood M, et al. MK2 inhibitory peptide delivered in nan-opolyplexes prevents vascular graft intimal hyperplasia[J]. Sci Transl Med, 2015, 7(291):291ra295.https://doi.org/10.1126/scitranslmed.aaa4549
  66. Li H, Chai S, Dai L, et al. Collagen external scaffolds mitigate intimal hyperplasia and improve remodeling of vein grafts in a rabbit arteriovenous graft model[J]. Biomed Res Int, 2017, 2017:7473437.https://doi.org/10.1155/2017/7473437
  67. Robinson E, Kaushal S, Alaboson J, et al. Combinatorial release of dexametha-sone and amiodarone from a nano-structured parylene-C film to reduce perioper-ative inflammation and atrial fibrillation[J]. Nanoscale, 2016, 8(7):4267-4275.https://doi.org/10.1039/c5nr07456h
  68. Burkhardt J, Natale A. New technologies in atrial fibrillation ablation[J]. Circu-lation, 2009, 120(15):1533-1541. https://doi.org/10.1161/circulationaha.109.858233
  69. DaCosta A, Guichard J, Maillard N, et al. Substantial superiority of Niobe ES over NiobeⅡsystem in remote-controlled magnetic pulmonary vein isolation[J]. Int J Cardiol, 2017, 230:319-323.https://doi.org/10.1016/j.ijcard.2016.12.115
  70. Qian P, DeSilva K, Kumar S, et al. Early and long-term outcomes after manual and remote magnetic navigation-guided catheter ablation for ventricular tachycar- dia[J]. Europace, 2018, 20(suppl 2):ii11-ii21.https://doi.org/10.1093/europace/euy057
  71. Grodanz E. Robotic mitral valve repair[J]. J Cardiovasc Nurs, 2015, 30(4):325-331.https://doi.org/10.1097/imi.0000000000000438