Journal Browser
Journal Insights

Frequency: Half-yearly                    

Time to first decision: 2.4 Weeks

Submission to publication: 4 Weeks        

Acceptance rate: 26%

ISSN:  2972-3418

Open Access Journal Article

Advances in Novel Tumor Therapeutics Based on Nanomaterial Technologies

by Chen Li a  and  Yi Liu b,*
a
Department of Biology, Chemistry, Pharmacy, Free University of Berlin, 14195, Berlin, Germany
b
Department of Surgery, School of Medicine, Stanford University,Stanford, CA 94305, USA
*
Author to whom correspondence should be addressed.
BAB  2023, 6; 2(1), 6; https://doi.org/10.58567/bab02010001
Received: 18 April 2023 / Accepted: 18 May 2023 / Published: 23 May 2023

Abstract

Cancer is the leading cause of death in the world, throughout the global researches of cancer treatment, people have a deeper understanding of cancer, and the treatment methods are constantly breakthrough. Conventional surgery, chemotherapy and radiotherapy have serious adverse effects and patients' quality of life is not significantly improved. Now, photodynamic therapy, photothermal therapy andthermodynamic therapy based on nanotechnology and materials technology are booming, and the development of these novel cancer therapies and their combination therapies brings more possibilities for cancer treatment. This review summarizes the research progress of novel cancer therapies based on nano and material technology from the aspects of mechanism of action and therapeutic methods, hoping to provide reference for their clinical application.


Copyright: © 2023 by Li and Liu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) (Creative Commons Attribution 4.0 International License). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Show Figures

Share and Cite

ACS Style
Li, C.; Liu, Y. Advances in Novel Tumor Therapeutics Based on Nanomaterial Technologies. Biomaterials and Biosensors, 2023, 2, 6. https://doi.org/10.58567/bab02010001
AMA Style
Li C, Liu Y. Advances in Novel Tumor Therapeutics Based on Nanomaterial Technologies. Biomaterials and Biosensors; 2023, 2(1):6. https://doi.org/10.58567/bab02010001
Chicago/Turabian Style
Li, Chen; Liu, Yi 2023. "Advances in Novel Tumor Therapeutics Based on Nanomaterial Technologies" Biomaterials and Biosensors 2, no.1:6. https://doi.org/10.58567/bab02010001
APA style
Li, C., & Liu, Y. (2023). Advances in Novel Tumor Therapeutics Based on Nanomaterial Technologies. Biomaterials and Biosensors, 2(1), 6. https://doi.org/10.58567/bab02010001

Article Metrics

Article Access Statistics

References

  1. Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2021; 71: 209 -249. 2021/02/05. doi:10.3322/caac.21660.
  2. Cao W, Chen HD, Yu YW, e t al. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020. Chin Med J (Engl) 2021; 134: 783 -791. 2021/03/19. doi:10.1097/cm9.0000000000001474.
  3. Jabaji RB, Fischer H, Kern T, et al. Trend o f Surgical Treatment of Localized Renal Cell Carcinoma. Perm J 2019; 23: 18 - 108. 2019/01/10. doi:10.7812/tpp/18-108.
  4. Wang JJ, Lei KF and Han F. Tumor microenvironment: recent advances in various cancer treatments. Eur Rev Med Pharmacol Sci 2018; 22: 38 55 -3864. 2018/06/28. doi:10.26355/eurrev_201806_15270.
  5. MacCormack MA. Photodynamic therapy. Adv Dermatol 2006; 22: 219 -258. 2007/01/26. doi:10.1016/j.yadr.2006.09.008.
  6. Kessel D. Death pathways associated with photodynamic therapy. Med Laser Appl 20 06; 21: 219 -224. 2006/11/15. doi:10.1016/j.mla.2006.05.006.
  7. Greenwald BD. Photodynamic therapy for esophageal cancer. Update. Chest Surg Clin N Am 2000; 10: 625 -637. 2000/09/01.
  8. Agostinis P, Berg K, Cengel KA, et al. Photodynamic therapy of cancer: an update. CA Cancer J Clin 2011; 61: 250 -281. 2011/05/28. doi:10.3322/caac.20114.
  9. Xie S and Fu S. Therapeutic characteristics and clinical evaluation element of the photosensitive drugs. CHINESE NEW DRUGS JOURNAL 2008; 17: 618.
  10. Wu H, Minamide T an d Yano T. Role of photodynamic therapy in the treatment of esophageal cancer. Digestive Endoscopy 2019; 31: 508 -516. doi:10.1111/den.13353.DOI:10.1111/den.13353.
  11. Chiu W -T, Tran T -TV, Pan S -C, et al. Cystic fibrosis transmembrane conductance regulato r: a possible new target for photodynamic therapy enhances wound healing. Advances in Wound Care 2019; 8: 476 -486. doi:10.1089/wound.2018.0927.
  12. Namvar MA, Vahedi M, Abdolsamadi H -r, et al. Effect of photodynamic therapy by 810 and 940 nm diode laser o n Herpes Simplex Virus 1: An in vitro study. Photodiagnosis and photodynamic therapy 2019; 25: 87 -91. doi:10.1016/j.pdpdt.2018.11.011.
  13. Matoba Y, Banno K, Kisu I, et al. Clinical application of photodynamic diagnosis and photodynamic therapy for gyneco logic malignant diseases: A review. Photodiagnosis and photodynamic therapy 2018; 24: 52 -57. doi:10.1016/j.pdpdt.2018.08.014.
  14. Cruess AF, Zlateva G, Pleil AM, et al. Photodynamic therapy with verteporfin in age-related macular degeneration: a systematic review of efficacy, safety, treatment modifications and pharmacoeconomic properties. Acta ophthalmologica 2009; 87: 118 -132. doi:10.1111/j.1755-3768.2008.01218.x.
  15. Moore C, Nathan T, Lees W, et al. Photodynamic therapy using meso tetra hydroxy phenyl chlorin (mTHPC) in early prostate cancer. Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser M edicine and Surgery 2006; 38: 356 -363. doi:10.1002/lsm.20275.
  16. Abrahamse H and Hamblin MR. New photosensitizers for photodynamic therapy. Biochem J 2016; 473: 347 -364. 2016/02/11. doi:10.1042/bj20150942.
  17. Kessel D. Photosensitization with derivatives of haematoporphyrin. Int J Radiat Biol Relat Stud Phys Chem Med 1986; 49: 901 -907. 1986/06/01. doi:10.1080/09553008514553131.
  18. Lee PK and Kloser A. Current methods for photodynamic therapy in the US: compar ison of MAL/PDT and ALA/PDT. J Drugs Dermatol 2013; 12: 925 -930. 2013/08/30.
  19. Liu AH, Sun X, Wei XQ, et al. Efficacy of multiple low -dose photodynamic TMPYP4 therapy on cervical cancer tumour growth in nude mice. Asian Pac J Cancer Prev 2013; 14: 5371 -5374. 2013/11/02. doi:10.7314/apjcp.2013.14.9.5371.
  20. Senge MO and Brandt JC. Temoporfin (Foscan®, 5, 10, 15, 20-tetra (m-hydroxyphenyl) chlorin) —a second-generation photosensitizer. Photochemistry and photobiology 2011; 87: 1240 -1296. doi:10.1111/j.1751-1097.2011.00986.x.
  21. Biswas R, Moon JH and Ahn JC. Chlorin e6 derivative radachlorin mainly accumulates in mitochondria, lysosome and endoplasmic reticulum and shows high affinity toward tumors in nude mice in photodynamic therapy. Photochem Photobiol 2014; 90: 1108 -1118. 2014/03/29. doi:10.1111/php.12273.
  22. Shafirstein G, Rigual NR, Arshad H, et al. Photodynamic therapy with 3 -(1' -hexyloxyethyl) pyropheophorbide -a for early -stage cancer of the larynx: Phase Ib study. Head Neck 2016; 38 Suppl 1: E377 -383. 2015/01/13. doi:10.1002/hed.24003.
  23. Soriano J, Villanueva A, Stockert JC, et al. Vehiculization determines the endocytic internalization mechanism of Zn(II) -phthalocyanine. Histochem Cell Biol 2013; 139: 149 -160. 2012/08/18. doi:10.1007/s00418-012-1012-6.
  24. Stern SJ, Flock ST, Small S, et al. Photodynamic therapy with chloroaluminum sulfonated phthalocyanine in the rat window chamber. Am J Surg 1990; 160: 360 -364. 1990/10/01. doi:10.1016/s0002-9610(05)80543-4.
  25. Anderson CY, Freye K, Tubesin g KA, et al. A comparative analysis of silicon phthalocyanine photosensitizers for in vivo photodynamic therapy of RIF -1 tumors in C3H mice. Photochem Photobiol 1998; 67: 332 -336. 1998/04/02. doi:10.1111/j.1751-1097.1998.tb05206.x.
  26. Theodossiou TA, Hot hersall JS, De Witte PA, et al. The multifaceted photocytotoxic profile of hypericin. Mol Pharm 2009; 6: 1775 -1789. 2009/09/11. doi:10.1021/mp900166q.
  27. Zhenjun D and Lown JW. Hypocrellins and their use in photosensitization. Photochem Photobiol 1990; 5 2: 609 -616. 1990/09/01. doi:10.1111/j.1751-1097.1990.tb01807.x.
  28. Tonon CC, Paschoal MA, Correia M, et al. Comparative effects of photodynamic therapy mediated by curcumin on standard and clinical isolate of Streptococcus mutans. J Contemp Dent Pract 20 15; 16: 1 -6. 2015/04/17. doi:10.5005/jp-journals-10024-1626.
  29. Wang H, Yu D, Fang J, et al. Renal -clearable porphyrinic metal –organic framework nanodots for enhanced photodynamic therapy. ACS nano 2019; 13: 9206 -9217. doi:10.1021/acsnano.9b03531.
  30. Zhang D, Ye Z, Wei L, et al. Cell membrane -coated porphyrin metal –organic frameworks for cancer cell targeting and O2 -evolving photodynamic therapy. ACS applied materials & interfaces 2019; 11: 39594 -39602. doi:10.1021/acsami.9b14084.
  31. Kessel D and Eric kson C. Porphyrin photosensitization of multi -drug resistant cell types. Photochem Photobiol 1992; 55: 397 -399. 1992/03/01. doi:10.1111/j.1751-1097.1992.tb04253.x.
  32. Szokalska A, Makowski M, Nowis D, et al. Proteasome inhibition potentiates antitumor ef fects of photodynamic therapy in mice through induction of endoplasmic reticulum stress and unfolded protein response. Cancer Res 2009; 69: 4235 -4243. 2009/05/14. doi:10.1158/0008-5472.Can-08-3439.
  33. Weinberg BD, Allison RR, Sibata C, et al. Results of combined photodynamic therapy (PDT) and high dose rate brachytherapy (HDR) in treatment of obstructive endobronchial non -small cell lung cancer (NSCLC). Photodiagnosis Photodyn Ther 2010; 7: 50 -58. 2010/03/17. doi:10.1016/j.pdpdt.2009.12.002.
  34. Liu W, B aer MR, Bowman MJ, et al. The tyrosine kinase inhibitor imatinib mesylate enhances the efficacy of photodynamic therapy by inhibiting ABCG2. Clin Cancer Res 2007; 13: 2463 -2470. 2007/04/18. doi:10.1158/1078-0432.Ccr-06-1599.
  35. Ferrario A, von Tiehl KF, Rucker N, et al. Antiangiogenic treatment enhances photodynamic therapy responsiveness in a mouse mammary carcinoma. Cancer Res 2000; 60: 4066 -4069. 2000/08 /17.
  36. Bhuvaneswari R, Yuen GY, Chee SK, et al. Hypericin -mediated photodynamic therapy in combination with Avastin (bevacizumab) improves tumor response by downregulating angiogenic proteins. Photochem Photobiol Sci 2007; 6: 1275 -1283. 2007/11/30. doi:10.1039/b705763f.
  37. Cengel KA, Hahn SM and Glatstein E. C225 and PDT combination therapy for ovarian cancer: the play's the thing. J Natl Cancer Inst 2005; 97: 1488 -1489. 2005/10/20. doi:10.1093/jnci/dji360.
  38. Ferrario A, Rucker N, Wong S, et al. Surv ivin, a member of the inhibitor of apoptosis family, is induced by photodynamic therapy and is a target for improving treatment response. Cancer Res 2007; 67: 4989 -4995. 2007/05/19. doi:10.1158/0008-5472.Can-06-4785.
  39. Golab J, Nowis D, Skrzycki M, et a l. Antitumor effects of photodynamic therapy are potentiated by 2 -methoxyestradiol. A superoxide dismutase inhibitor. J Biol Chem 2003; 278: 407 -414. 2002/11/01. doi:10.1074/jbc.M209125200.
  40. Nowis D, Legat M, Grzela T, et al. Heme oxygenase -1 protects tumor cells against photodynamic therapy -mediated cytotoxicity. Oncogene 2006; 25: 3365 -3374. 2006/02/08. doi:10.1038/sj.onc.1209378.
  41. Henderson BW, Sitnik -Busch TM and Vaughan LA. Potentiation of photodynamic therapy antitumor activity in mice by nitr ic oxide synthase inhibition is fluence rate dependent. Photochem Photobiol 1999; 70: 64 -71. 1999/07/27. doi:10.1111/j.1751-1097.1999.tb01950.x.
  42. Ferrario A, Von Tiehl K, Wong S, et al. Cyclooxygenase -2 inhibitor treatment enhances photodynamic therapy - mediated tumor response. Cancer Res 2002; 62: 3956 -3961. 2002/07/19.
  43. Li X, Lovell JF, Yoon J, et al. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat Rev Clin Oncol 2020; 17: 657 -674. 2020/07/24. doi:10.1038/s41571-020-0410-2.
  44. Ban Q, Bai T, Duan X, et al. Noninvasive photothermal cancer therapy nanoplatforms via integrating nanomaterials and functional polymers. Biomater Sci 2017; 5: 190 -210. 2016/12/19. doi:10.1039/c6bm00600k.
  45. Qin Z, Du T, Zheng Y, et al. Glutathione Induced Transformation of Partially Hollow Gold -Silver Nanocages for Cancer Diagnosis and Photothermal Therapy. Small 2019; 15: e1902755. 2019/07/28. doi:10.1002/smll.201902755.
  46. Yang Y, Zhu W, Dong Z, et al. 1D Coordination Polymer Nanofibers for Low -Temperature Photothermal Therapy. Adv Mater 2017; 29 2017/08/24. doi:10.1002/adma.201703588.
  47. Li W, Peng J, Tan L, et al. Mild photothermal therapy/photodynamic therapy/chemotherapy of breast cancer by Lyp - 1 mod ified Docetaxel/IR820 Co -loaded micelles. Biomaterials 2016; 106: 119 -133. 2016/08/27. doi:10.1016/j.biomaterials.2016.08.016.
  48. Ding Y, Du C, Qian J, et al. NIR -Responsive Polypeptide Nanocomposite Generates NO Gas, Mild Photothermia, and Chemotherapy to Reverse Multidrug -Resistant Cancer. Nano Lett 2019; 19: 4362 -4370. 2019/06/15. doi:10.1021/acs.nanolett.9b00975.
  49. Tang X, Tan L, Shi K, et al. Gold nanorods together with HSP inhibitor -VER -155008 micelles for colon cancer mild - temperature phototherm al therapy. Acta Pharm Sin B 2018; 8: 587 -601. 2018/08/16. doi:10.1016/j.apsb.2018.05.011.
  50. Deng X, Guan W, Qing X, et al. Ultrafast Low -Temperature Photothermal Therapy Activates Autophagy and Recovers Immunity for Efficient Antitumor Treatment. ACS A ppl Mater Interfaces 2020; 12: 4265 -4275. 2020/01/07. doi:10.1021/acsami.9b19148.
  51. Qiu K, Wang J, Rees TW, et al. A mitochondria -targeting photothermogenic nanozyme for MRI -guided mild photothermal therapy. Chem Commun (Camb) 2018; 54: 14108 -14111. 201 8/12/01. doi:10.1039/c8cc08570f.
  52. Li Z, Chen Y, Yang Y, et al. Recent Advances in Nanomaterials -Based Chemo -Photothermal Combination Therapy for Improving Cancer Treatment. Front Bioeng Biotechnol 2019; 7: 293. 2019/11/07. doi:10.3389/fbioe.2019.00293.
  53. Pan Q, Tian J, Zhu H, et al. Tumor -Targeting Polycaprolactone Nanoparticles with Codelivery of Paclitaxel and IR780 for Combinational Therapy of Drug -Resistant Ovarian Cancer. ACS Biomater Sci Eng 2020; 6: 2175 -2185. 2021/01/19. doi:10.1021/acsbiomaterials.0c00163.
  54. Lee SY and Shieh MJ. Platinum(II) Drug -Loaded Gold Nanoshells for Chemo -Photothermal Therapy in Colorectal Cancer. ACS Appl Mater Interfaces 2020; 12: 4254 -4264. 2020/01/14. doi:10.1021/acsami.9b18855.
  55. Tian B, Wang C, Zhang S, et al. Photothermally enhanced photodynamic therapy delivered by nano -graphene oxide. ACS Nano 2011; 5: 7000 -7009. 2011/08/06. doi:10.1021/nn201560b.
  56. Chuang CC, Chen YN, Wang YY, et al. Stem Cell -Based Delivery of Gold/Chlorin e6 Nanocomplexes for Combin ed Photothermal and Photodynamic Therapy. ACS Appl Mater Interfaces 2020; 12: 30021 -30030. 2020/07/01. doi:10.1021/acsami.0c03446.
  57. Wu F, Liu Y, Wu Y, et al. Chlorin e6 and polydopamine modified gold nanoflowers for combined photothermal and photodynam ic therapy. J Mater Chem B 2020; 8: 2128 -2138. 2020/02/20. doi:10.1039/c9tb02646k.
  58. Ashkbar A, Rezaei F, Attari F, et al. Treatment of breast cancer in vivo by dual photodynamic and photothermal approaches with the aid of curcumin photosensitizer and magnetic nanoparticles. Sci Rep 2020; 10: 21206. 2020/12/05. doi:10.1038/s41598-020-78241-1.
  59. Huang X, Wu J, He M, et al. Combined Cancer Chemo -Photodynamic and Photothermal Therapy Based on ICG/PDA/TPZ -Loaded Nanoparticles. Mol Pharm 2019; 16: 2172 -2183. 2019/04/13. doi:10.1021/acs.molpharmaceut.9b00119.
  60. Kim J, Kim J, Jeong C, et al. Synergistic nanomedicine by combined gene and photothermal therapy. Adv Drug Deliv Rev 2016; 98: 99 -112. 2016/01/10. doi:10.1016/j.addr.2015.12.018.
  61. Liu Y, Tan M, Zhang Y, et al. Targeted Gene Silencing BRAF Synergized Photothermal Effect Inhibits He patoma Cell Growth Using New GAL -GNR -siBRAF Nanosystem. Nanoscale Res Lett 2020; 15: 116. 2020/05/26. doi:10.1186/s11671-020-03340-x.
  62. Jia X, Xu W, Ye Z, et al. Functionalized Graphene@Gold Nanostar/Lipid for Pancreatic Cancer Gene and Photothermal Syn ergistic Therapy under Photoacoustic/Photothermal Imaging Dual -Modal Guidance. Small 2020; 16: e2003707. 2020/08/28. doi:10.1002/smll.202003707.
  63. Chang M, Hou Z, Wang M, et al. Recent Advances in Hyperthermia Therapy -Based Synergistic Immunotherapy. Ad v Mater 2021; 33: e2004788. 2020/12/09. doi:10.1002/adma.202004788.
  64. Huang L, Li Y, Du Y, et al. Mild photothermal therapy potentiates anti -PD -L1 treatment for immunologically cold tumors via an all -in-one and all -in-control strategy. Nat Commun 2019; 10: 4871. 2019/10/28. doi:10.1038/s41467-019-12771-9.
  65. Nicolas -Boluda A, Laurent G, Bazzi R, et al. Two step promotion of a hot tumor immune environment by gold decorated iron oxide nanoflowers and light -triggered mild hyperthermia. Nanoscale 2021; 13: 18483 -18497. 2021/11/10. doi:10.1039/d1nr03201a.
  66. Fenn A. The Celsion adaptive thermodynamic therapy (TDT) drug delivery system for treating deep -seated cancer. Drug Deliv Tech October 2002; 2.
  67. Wang M, Zhao Y, Chang M, et al. Azo Initiator Loaded Black Mesoporous Titania with Multiple Optical Energy Conversion for Synergetic Photo -Thermal -Dynamic Therapy. ACS Appl Mater Interfaces 2019; 11: 47730 -47738. 2019/12/04. doi:10.1021/acsami.9b17375.
  68. Xiang H, Lin H, Yu L, et al. Hypoxia -Irrelevant Pho tonic Thermodynamic Cancer Nanomedicine. ACS Nano 2019; 13: 2223 -2235. 2019/01/10. doi:10.1021/acsnano.8b08910.
  69. Sun X, Liu D, Xu X, et al. NIR -triggered thermo -responsive biodegradable hydrogel with combination of photothermal and thermodynamic therap y for hypoxic tumor. Asian J Pharm Sci 2020; 15: 713 -727. 2020/12/29. doi:10.1016/j.ajps.2019.11.007.
  70. Xu H, Sheng G, Lu L, et al. GRPr -mediated photothermal and thermodynamic dual -therapy for prostate cancer with synergistic anti -apoptosis mechanism. Nanoscale 2021; 13: 4249 -4261. 2021/02/18. doi:10.1039/d0nr07196j.
  71. Trachootham D, Alexandre J and Huang P. Targeting cancer cells by ROS -mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 2009; 8: 579 -591. 2009/05/30. doi:10.1038/nrd2803.
  72. Prucker O and Ru he J. Synthesis of poly (styrene) monolayers attached to high surface area silica gels through self - assembled monolayers of azo initiators. Macromolecules 1998; 31: 592 -601. doi:10.1021/ma970660x.
  73. Goto A, Kwak Y, Fukuda T, et al. Mechanism -based invention of high -speed living radical polymerization using organotellurium compounds and azo -initiators. Journal of the American Chemical Society 2003; 125: 8720 -8721. doi:10.1021/ja035464m.
  74. Wu S, Liu X, Ren J, et al. Glutathione Depletion in a Benign Manner by MoS(2) -Based Nanoflowers for Enhanced Hypoxia -Irrelevant Free -Radical -Based Cancer Therapy. Small 2019; 15: e1904870. 2019/11/22. doi:10.1002/smll.201904870.
  75. Wan Y, Lu G, Zhang J, et al. A biocompatible free radical nanogenerator with real-time monitoring capability for high performance sequential hypoxic tumor therapy. Advanced Functional Materials 2019; 29: 1903436. doi:10.1002/adfm.201903436.
  76. Zhao PH, Ma ST, Hu JQ, et al. Artesunate -Based Multifunctional Nanoplatform for Photothermal/Photoinduced Thermodynamic Synergistic Anticancer Therapy. ACS Appl Bio Mater 2020; 3: 7876 -7885. 2020/11/16. doi:10.1021/acsabm.0c01026.
  77. Liu Z, Wan P, Liu Z, et al. Photothermal Generation of Oxygen -Irrelevant Free Radicals with Simultaneous Suppression of Glutathione Synthesis for an Enhanced Photonic Thermodynamic Cancer Therapy. ACS Biomater Sci Eng 2020; 6: 6186 -6194. 2021/01/16. DOI: 10.1021/acsbiomaterials.0c00889.