Cancer treatment faces multiple challenges, including tumor heterogeneity, drug resistance, microenvironment influence, treatment side effects, and treatment cost. The heterogeneity of the tumor makes the effect of the same treatment vary in different patients, so the development of personalized treatment strategies is crucial. In addition, resistance of tumor cells to therapeutic drugs is a major challenge, and new strategies to overcome resistance are needed. As a cutting-edge field of science and technology, nanotechnology has brought great potential and opportunities for tumor treatment. Nanoparticle drug delivery systems improve drug efficacy and reduce side effects through precise targeted delivery and controlled release. Cell-membrane coated nanoparticles show great promise in tumor therapy. Nanoparticles coated with cell membranes have good biocompatibility, can reduce the obstacles of immune rejection and cell uptake, improve the accumulation and retention of drugs in tumor tissues, and have good drug delivery ability, drug stability and control release ability. This review discusses advances in the use of cell-membrane coated nanoparticles to target tumor drugs.
Feng, M.; Zheng, Y. Advances in the use of cell-membrane encapsulated nanoparticles to target tumor drugs. Biomaterials and Biosensors, 2023, 2, 10. https://doi.org/10.58567/bab02020001
AMA Style
Feng M, Zheng Y. Advances in the use of cell-membrane encapsulated nanoparticles to target tumor drugs. Biomaterials and Biosensors; 2023, 2(2):10. https://doi.org/10.58567/bab02020001
Chicago/Turabian Style
Feng, Mengdie; Zheng, Yonghua 2023. "Advances in the use of cell-membrane encapsulated nanoparticles to target tumor drugs" Biomaterials and Biosensors 2, no.2:10. https://doi.org/10.58567/bab02020001
APA style
Feng, M., & Zheng, Y. (2023). Advances in the use of cell-membrane encapsulated nanoparticles to target tumor drugs. Biomaterials and Biosensors, 2(2), 10. https://doi.org/10.58567/bab02020001
Article Metrics
Article Access Statistics
References
Liang W, Dong Y, Shao R, et al. Application of nanoparticles in drug delivery for the treatment of osteosarcoma: focussing on the liposomes[J]. J Drug Target, 2022, 30:463-475. https://doi.org/10.1080/1061186X.2021.2023160
Choi MJ, Choi KC, Lee DH, et al. EGF Receptor-Targeting Cancer Therapy Using CD47-Engineered Cell-Derived Nanoplatforms[J]. Nanotechnol Sci Appl, 2022, 15:17-31. https://doi.org/10.2147/NSA.S352038
Baghbanbashi M, Kakkar A. Polymersomes: Soft Nanoparticles from Miktoarm Stars for Applications in Drug Delivery[J]. Mol Pharm, 2022, 19:1687-1703. https://doi.org/10.1021/acs.molpharmaceut.1c00928
Xiang G, Huo J, Liu Z. Understanding and application of metal-support interactions in catalysts for CO-PROX[J]. Phys Chem Chem Phys, 2022, 24:18454-18468. https://doi.org/10.1039/D2CP02035A
Guo J, Huang L. Formulation of two lipid-based membrane-core nanoparticles for FOLFOX combination therapy[J]. Nat Protoc, 2022, 17:1818-1831. https://doi.org/10.1038/s41596-022-00698-3
Kim HE, Kwon J, Lee H. Catalytic approaches towards highly durable proton exchange membrane fuel cells with minimized Pt use[J]. Chem Sci, 2022, 13:6782-6795. https://doi.org/10.1039/D2SC00541G
Milogrodzka I, Nguyen Pham DT, Sama GR, et al. Effect of Cholesterol on Biomimetic Membrane Curvature and Coronavirus Fusion Peptide Encapsulation[J]. ACS Nano, 2023, 17:8598-8612. https://doi.org/10.1021/acsnano.3c01095
Bao L, Dou G, Tian R, et al. Engineered neutrophil apoptotic bodies ameliorate myocardial infarction by promoting macrophage efferocytosis and inflammation resolution[J]. Bioact Mater, 2022, 9:183-197. https://doi.org/10.1016/j.bioactmat.2021.08.008
Taghavi S, Tabasi H, Zahiri M, et al. Surface engineering of hollow gold nanoparticle with mesenchymal stem cell membrane and MUC-1 aptamer for targeted theranostic application against metastatic breast cancer[J]. Eur J Pharm Biopharm, 2023, 187:76-86. https://doi.org/10.1016/j.ejpb.2023.04.014
Li Z, Cai H, Li Z, et al. A tumor cell membrane-coated self-amplified nanosystem as a nanovaccine to boost the therapeutic effect of anti-PD-L1 antibody[J]. Bioact Mater, 2023, 21:299-312. https://doi.org/10.1016/j.bioactmat.2022.08.028
Han S, Bi S, Guo T, et al. Nano co-delivery of Plumbagin and Dihydrotanshinone I reverses immunosuppressive TME of liver cancer[J]. J Control Release, 2022, 348:250-263. https://doi.org/10.1016/j.jconrel.2022.05.057
Caggiano NJ, Wilson BK, Priestley RD, et al. Development of an In Vitro Release Assay for Low-Density Cannabidiol Nanoparticles Prepared by Flash NanoPrecipitation[J]. Mol Pharm, 2022, 19:1515-1525. https://doi.org/10.1021/acs.molpharmaceut.2c00041
Li Y, Ruan S, Guo J, et al. B16F10 Cell Membrane-Based Nanovesicles for Melanoma Therapy Are Superior to Hyaluronic Acid-Modified Nanocarriers[J]. Mol Pharm, 2022, 19:2840-2853. https://doi.org/10.1021/acs.molpharmaceut.2c00212
Ma Y, Gao W, Zhang Y, et al. Biomimetic MOF Nanoparticles Delivery of C-Dot Nanozyme and CRISPR/Cas9 System for Site-Specific Treatment of Ulcerative Colitis[J]. ACS Appl Mater Interfaces, 2022, 14:6358-6369. https://doi.org/10.1021/acsami.1c21700
Rodriguez R, Palma MS, Bhandari D, et al. Electrodeposition of Ag/ZIF-8-Modified Membrane for Water Remediation[J]. Langmuir, 2023, 39:2291-2300. https://doi.org/10.1021/acs.langmuir.2c02947
Liška V, Kubát P, Křtěnová P, et al. Magnetically Separable Photoactive Nanofiber Membranes for Photocatalytic and Antibacterial Applications[J]. ACS Omega, 2022, 7:47986-47995. https://doi.org/10.1021/acsomega.2c05935
Ying K, Zhu Y, Wan J, et al. Macrophage membrane-biomimetic adhesive polycaprolactone nanocamptothecin for improving cancer-targeting efficiency and impairing metastasis[J]. Bioact Mater, 2023, 20:449-462. https://doi.org/10.1016/j.bioactmat.2022.06.013
Czajka A, Byard SJ, Armes SP. Silica nanoparticle-loaded thermoresponsive block copolymer vesicles: a new post-polymerization encapsulation strategy and thermally triggered release[J]. Chem Sci, 2022, 13:9569-9579. https://doi.org/10.1039/D2SC02103J
Xu C, Ban Q, Wang W, et al. Novel nano-encapsulated probiotic agents: Encapsulate materials, delivery, and encapsulation systems[J]. J Control Release, 2022, 349:184-205. https://doi.org/10.1016/j.jconrel.2022.06.061
Harris JC, Sterin EH, Day ES. Membrane-Wrapped Nanoparticles for Enhanced Chemotherapy of Acute Myeloid Leukemia[J]. ACS Biomater Sci Eng, 2022, 8:4439-4448. https://doi.org/10.1021/acsbiomaterials.2c00832
Yang K, Han W, Jiang X, et al. Zinc cyclic di-AMP nanoparticles target and suppress tumours via endothelial STING activation and tumour-associated macrophage reinvigoration[J]. Nat Nanotechnol, 2022, 17:1322-1331. https://doi.org/10.1038/s41565-022-01225-x
Zhang S, Li R, Zheng Y, et al. Erythrocyte Membrane-Enveloped Salvianolic Acid B Nanoparticles Attenuate Cerebral Ischemia-Reperfusion Injury[J]. Int J Nanomedicine, 2022, 17:3561-3577. https://doi.org/10.2147/IJN.S392089
Cao H, Gao Y, Jia H, et al. Macrophage-Membrane-Camouflaged Nonviral Gene Vectors for the Treatment of Multidrug-Resistant Bacterial Sepsis[J]. Nano Lett, 2022, 22:7882-7891. https://doi.org/10.1021/acs.nanolett.2c02560
Tomnikova A, Orgonikova A, Krizek T. Liposomes: preparation and characterization with a special focus on the application of capillary electrophoresis[J]. Monatsh Chem, 2022, 153:687-695. https://doi.org/10.1007/s00706-022-02966-0
Yang C, Wu Y, Wang L, et al. Glioma-derived exosomes hijack the blood-brain barrier to facilitate nanocapsule delivery via LCN2[J]. J Control Release, 2022, 345:537-548. https://doi.org/10.1016/j.jconrel.2022.03.038
Martín-Pardillos A, Martín-Duque P. Nanoparticle (NP) Loading by Direct Incubation with Extracellular Vesicles-Secretor Cells: NP Encapsulation and Exosome Characterization[J]. Methods Mol Biol, 2023, 2668:121-132. https://doi.org/10.1007/978-1-0716-3203-1_10
Guo Y, Li Y, Zhou S, et al. Metal-Organic Framework-Based Composites for Protein Delivery and Therapeutics[J]. ACS Biomater Sci Eng, 2022, 8:4028-4038. https://doi.org/10.1021/acsbiomaterials.0c01600