Open Access Journal Article

Decoding the Puzzle of Joblessness: Machine Learning Predicts Unemployment Trends in the Americas

by Diego Vallarino a,*
a
Independent Researcher, Atlanta, USA
*
Author to whom correspondence should be addressed.
Received: 1 March 2024 / Accepted: 27 June 2024 / Published Online: 2 July 2025

Abstract

This study investigates the efficacy of diverse machine learning survival models, including Cox, Kernel SVM, DeepSurv, Survival Random Forest, and MTLR models, employing the concordance index to assess their predictive abilities. The primary objective of this research is to identify the most accurate model for forecasting the time it takes for a country to witness a 10% surge in unemployment within a 120-month timeframe (2013-2022), utilizing variables from the MVI dataset of 28 American countries. Through the comparative evaluation of complex survival models, we discovered that DeepSurv, a sophisticated machine learning algorithm, excels in capturing intricate nonlinear relationships, while conventional models exhibit comparable performance under specific circumstances. The weight matrix, a pivotal element of our analysis, meticulously assesses the economic repercussions of various risk factors, vulnerabilities, and capabilities.


Copyright: © 2025 by Vallarino. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) (Creative Commons Attribution 4.0 International License). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Cite This Paper
APA Style
Vallarino, D. (2025). Decoding the Puzzle of Joblessness: Machine Learning Predicts Unemployment Trends in the Americas. Journal of Regional Economics, 4(1), 17. doi:10.58567/jre04010001
ACS Style
Vallarino, D. Decoding the Puzzle of Joblessness: Machine Learning Predicts Unemployment Trends in the Americas. Journal of Regional Economics, 2025, 4, 17. doi:10.58567/jre04010001
AMA Style
Vallarino D. Decoding the Puzzle of Joblessness: Machine Learning Predicts Unemployment Trends in the Americas. Journal of Regional Economics; 2025, 4(1):17. doi:10.58567/jre04010001
Chicago/Turabian Style
Vallarino, Diego 2025. "Decoding the Puzzle of Joblessness: Machine Learning Predicts Unemployment Trends in the Americas" Journal of Regional Economics 4, no.1:17. doi:10.58567/jre04010001

Share and Cite

ACS Style
Vallarino, D. Decoding the Puzzle of Joblessness: Machine Learning Predicts Unemployment Trends in the Americas. Journal of Regional Economics, 2025, 4, 17. doi:10.58567/jre04010001
AMA Style
Vallarino D. Decoding the Puzzle of Joblessness: Machine Learning Predicts Unemployment Trends in the Americas. Journal of Regional Economics; 2025, 4(1):17. doi:10.58567/jre04010001
Chicago/Turabian Style
Vallarino, Diego 2025. "Decoding the Puzzle of Joblessness: Machine Learning Predicts Unemployment Trends in the Americas" Journal of Regional Economics 4, no.1:17. doi:10.58567/jre04010001
APA style
Vallarino, D. (2025). Decoding the Puzzle of Joblessness: Machine Learning Predicts Unemployment Trends in the Americas. Journal of Regional Economics, 4(1), 17. doi:10.58567/jre04010001

Article Metrics

Article Access Statistics

References

  1. Assa, J., and Meddeb, R. (2021). Towards a multidimensional vulnerability index. United Nations Development Programme. Retrieved April, 14, 2023.
  2. Azodi, C. B., Tang, J., and Shiu, S. H. (2020). Opening the Black Box: Interpretable Machine Learning for Geneticists. In Trends in Genetics, 36(6), 442–455. Elsevier Ltd. https://doi.org/10.1016/j.tig.2020.03.005
  3. Balica, S. F., Dinh, Q., and Popescu, I. (2023). Chapter 4 - Vulnerability and exposure in developed and developing countries: large-scale assessments. In J. F. Shroder, P. Paron, & G. Di Baldassarre (Eds.). Hydro-Meteorological Hazards, Risks, and Disasters (Second Edition) (Second Edition, 5, 103–143). Elsevier. https://doi.org/10.1016/B978-0-12-819101-9.00013-3
  4. Barnwal, A., Cho, H., and Hocking, T. (2022). Survival Regression with Accelerated Failure Time Model in XGBoost. Journal of Computational and Graphical Statistics, 31(4), 1292–1302. https://doi.org/10.1080/10618600.2022.2067548
  5. Barrett, J. K., Siannis, F., and Farewell, V. T. (2011). A semi-competing risks model for data with interval-censoring and informative observation: An application to the MRC cognitive function and ageing study. Statistics in Medicine, 30(1), 1–10. https://doi.org/10.1002/sim.4071
  6. Basak, P., Linero, A., Sinha, D., and Lipsitz, S. (2022a). Semiparametric analysis of clustered interval-censored survival data using soft Bayesian additive regression trees (SBART). Biometrics, 78(3), 880–893. https://doi.org/10.1111/biom.13478
  7. Cui, P., Shen, Z., Li, S., Yao, L., Li, Y., Chu, Z., and Gao, J. (2020). Causal Inference Meets Machine Learning. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 3527–3528. https://doi.org/10.1145/3394486.3406460
  8. Cuperlovic-Culf, M. (2018). Machine Learning Methods for Analysis of Metabolic Data and Metabolic Pathway Modeling. Metabolites, 8(1). https://doi.org/10.3390/metabo8010004
  9. Dutta, I., and Mishra, A. (2023). Economics Measuring Vulnerability to Poverty: A Unified Framework Measuring Vulnerability to Poverty: A Unified Framework *.
  10. Finch, H. (2005). Comparison of Distance Measures in Cluster Analysis with Dichotomous Data. In Journal of Data Science, 3.
  11. Gabrikova, B., Svabova, L., and Kramarova, K. (2023). Machine Learning Ensemble Modelling for Predicting Unemployment Duration. Applied Sciences, 13(18), 10146. https://doi.org/10.3390/app131810146
  12. Gorfine, M., and Zucker, D. M. (2022). Shared Frailty Methods for Complex Survival Data: A Review of Recent Advances.
  13. Hair, J. F., and Fávero, L. P. (2019). Multilevel modeling for longitudinal data: concepts and applications. RAUSP Management Journal, 54(4), 459–489. https://doi.org/10.1108/RAUSP-04-2019-0059
  14. Haradal, S., Hayashi, H., and Uchida, S. (2018). Biosignal Data Augmentation Based on Generative Adversarial Networks. 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 368–371. https://doi.org/10.1109/EMBC.2018.8512396
  15. Jiang, R. (2022). A novel parameter estimation method for the Weibull distribution on heavily censored data. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 236(2), 307–316. https://doi.org/10.1177/1748006X19887648
  16. Jin, P., Haider, H., Greiner, R., Wei, S., and Häubl, G. (2021). Using survival prediction techniques to learn consumer-specific reservation price distributions. PLoS ONE, 16(4 April). https://doi.org/10.1371/journal.pone.0249182
  17. Jin Ziwei and Shang, J. and Z. Q. and L. C. and X. W. and Q. B. (2020). RFRSF: Employee Turnover Prediction Based on Random Forests and Survival Analysis. In W. and W. H. and Z. R. and Z. Y. Huang Zhisheng and Beek (Ed.), Web Information Systems Engineering – WISE 2020, (503–515). Springer International Publishing.
  18. Khan, F. M., and Zubek, V. B. (2008). Support Vector Regression for Censored Data (SVRc): A Novel Tool for Survival Analysis. 2008 Eighth IEEE International Conference on Data Mining, 863–868. https://doi.org/10.1109/ICDM.2008.50
  19. Le-Van, C., and Tran-Nam, B. (2023). Comparing the Harrod-Domar, Solow and Ramsey growth models and their implications for economic policies. Fulbright Review of Economics and Policy. https://doi.org/10.1108/frep-06-2023-0022
  20. Maharana, K., Mondal, S., and Nemade, B. (2022). A review: Data pre-processing and data augmentation techniques. Global Transitions Proceedings, 3(1), 91–99. https://doi.org/10.1016/j.gltp.2022.04.020
  21. Mumuni, A., and Mumuni, F. (2022). Data augmentation: A comprehensive survey of modern approaches. Array, 16, 100258. https://doi.org/10.1016/j.array.2022.100258
  22. Nolan, B., Roser, M., and Thewissen, S. (2019). GDP Per Capita Versus Median Household Income: What Gives Rise to the Divergence Over Time and how does this Vary Across OECD Countries? Review of Income and Wealth, 65(3), 465–494. https://doi.org/10.1111/roiw.12362
  23. Organization of American States (2023). Strategic Counsel for Organizational Development and Management for Results. Internal Report
  24. Raghunathan, T. E. (2004). What Do We Do with Missing Data? Some Options for Analysis of Incomplete Data. Annual Review of Public Health, 25(1), 99–117. https://doi.org/10.1146/annurev.publhealth.25.102802.124410
  25. Thenmozhi, M., Jeyaseelan, V., Jeyaseelan, L., Isaac, R., and Vedantam, R. (2019). Survival analysis in longitudinal studies for recurrent events: Applications and challenges. Clinical Epidemiology and Global Health, 7(2), 253–260. https://doi.org/10.1016/j.cegh.2019.01.013
  26. Vallarino, D. (2023). Buy when? Survival machine learning model comparison for purchase timing. arXiv.
  27. Vallarino, D. (2024). A dynamic approach to stock price prediction: Comparing RNN and mixture of experts models across different volatility profiles. arXiv.
  28. Vallarino, D. (2023). Machine learning survival models restrictions: The case of startups time to fail with collinearity-related issues. Journal of Economic Statistics, 1(3), 1–15. https://doi.org/10.58567/jes01030001
  29. Vinzamuri, B., Li, Y., and Reddy, C. K. (n.d.). Pre-Processing Censored Survival Data using Inverse Covariance Matrix based Calibration. In IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (Issue 1).
  30. Wang, L., Li, Y., Zhou, J., Zhu, D., and Ye, J. (2017). Multi-task Survival Analysis. 2017 IEEE International Conference on Data Mining (ICDM), 485–494. https://doi.org/10.1109/ICDM.2017.58
  31. Wang, P., Li, Y., and Reddy, C. K. (2017). Machine Learning for Survival Analysis: A Survey.
  32. Yuan, H., Xie, F., Ong, M. E. H., Ning, Y., Chee, M. L., Saffari, S. E., Abdullah, H. R., Goldstein, B. A., Chakraborty, B., and Liu, N. (2022). AutoScore-Imbalance: An interpretable machine learning tool for development of clinical scores with rare events data. Journal of Biomedical Informatics, 129, 104072. https://doi.org/10.1016/j.jbi.2022.104072
  33. Yunita, R., Gunarto, T., Marselina, M., and Yuliawan, D. (2023). The Influence of GDP per Capita, Income Inequality, and Population on CO2 Emission (Environmental Kuznet Curve Analysis in Indonesia). International Journal of Social Science, Education, Communication and Economics (SINOMICS JOURNAL), 2(2), 217–230. https://doi.org/10.54443/sj.v2i2.130
  34. Zelenkov, Y. (2020). Bankruptcy prediction using survival analysis technique. Proceedings - 2020 IEEE 22nd Conference on Business Informatics, CBI 2020, 2, 141–149. https://doi.org/10.1109/CBI49978.2020.10071
  35. Zhao, Z. L., Yu, H. J., and Cheng, F. (2022). An Analysis of Factors Affecting Agricultural Tractors’ Reliability Using Random Survival Forests Based on Warranty Data. IEEE Access, 10, 50183–50194. https://doi.org/10.1109/ACCESS.2022.3172348
  36. Zhou, F., Fu, L., Li, Z., and Xu, J. (2022). The recurrence of financial distress: A survival analysis. International Journal of Forecasting, 38(3), 1100–1115. https://doi.org/10.1016/j.ijforecast.2021.12.005