Journal Browser
Journal Insights

Frequency: Half-yearly                    

Time to first decision: 2.4 Weeks

Submission to publication: 4 Weeks        

Acceptance rate: 26%

ISSN:  2972-3418

Open Access Review

Application of nanodrugs in the treatment of cardiovascular diseases

by Qiang Xie a,1 orcid Hongmei Yang b,1 orcid  and  Wenjie Shi c,* orcid
Department of Vascular Interventional Radiology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong, China, 510630
Department of Biological Engineering and Chemistry, and Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Molecular and Experimental Surgery, University Clinic for General-, Visceral-, Vascular and Trans-Plantation Surgery, Medical Faculty University Hospital Magdeburg, Otto-von Guericke University, 39120 Magdeburg, Germany
Author to whom correspondence should be addressed.
Received: 5 July 2023 / Accepted: 14 July 2023 / Published: 17 July 2023


Cardiovascular disease is still a disease with high incidence rate and mortality. Although advanced technology continues to increase our understanding of cardiovascular disease, its diagnosis and treatment still have limitations. As an emerging interdisciplinary method, nanotechnology has shown enormous clinical application potential. Nanomaterials have unique physical and chemical properties, which help to improve the sensitivity and specificity of biosensor technology and molecular imaging technology in the diagnosis of cardiovascular diseases. This paper first summarizes the versatility of nanomaterials, the physicochemical adjustability of biomolecular engineering, the design strategy of nanoparticles in cardio cerebral Vascular disease, the application of nanomaterials in the diagnosis and treatment of common cardiovascular diseases, and the use of nanomaterials can significantly improve the diagnostic sensitivity, specificity and therapeutic effect. Subsequently, the article summarized various nanomaterials. Finally, the article demonstrated the potential of the antioxidant/anti-inflammatory and photoelectric/photothermal properties of nanomaterials to be directly applied to the treatment of cardiovascular diseases.

Copyright: © 2023 by Xie, Yang and Shi. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) (Creative Commons Attribution 4.0 International License). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Show Figures

Share and Cite

ACS Style
Xie, Q.; Yang, H.; Shi, W. Application of nanodrugs in the treatment of cardiovascular diseases. Biomaterials and Biosensors, 2023, 2, 8.
AMA Style
Xie Q, Yang H, Shi W. Application of nanodrugs in the treatment of cardiovascular diseases. Biomaterials and Biosensors; 2023, 2(1):8.
Chicago/Turabian Style
Xie, Qiang; Yang, Hongmei; Shi, Wenjie 2023. "Application of nanodrugs in the treatment of cardiovascular diseases" Biomaterials and Biosensors 2, no.1: 8.
APA style
Xie, Q., Yang, H., & Shi, W. (2023). Application of nanodrugs in the treatment of cardiovascular diseases. Biomaterials and Biosensors, 2(1), 8.

Article Metrics

Article Access Statistics


  1. Wong IY, Bhatia SN, Toner M. Nanotechnology: emerging tools for biology and medicine [J].Genes Dev, 2013, 27(22): 2397-2408.
  2. Karimi M, Zare H, Bakhshian NA, et al. Nanotechnology in diagnosis and treatment of coronary artery disease[J].Nanomedicine( Lond) , 2016, 11( 5) : 513-530.
  3. Ambesh P, Campia U, Obiagwu C, et al. Nanomedicine in coronary artery disease [J].Indian Heart J, 2017, 69( 2) : 244-251.
  4. Peters D, Kastantin M, Kotamraju V, et al. Targeting atherosclerosis by using modular, multifunctional micelles [J]. Proc Natl Acad Sci U S A, 2009, 106 (24): 9815-9819.
  5. Cyrus T, Wickline SA, Lanza GM. Nanotechnology in interventional cardiology [J].Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2012, 4(1): 82-95.
  6. Tsukie N, Nakano K, Matoba T, et al. Pitavastatin-incorporated nanoparticle-eluting stents attenuate in-stent stenosis without delayed endothelial healing effects in a porcine coronary artery model[J].J Atheroscler Thromb, 2013, 20( 1) : 32-45.
  7. Madhurantakam S, Babu KJ, Rayappan JBB, et al. Nanotechnology-based electrochemical detection strategies for hypertension markers[J].Biosens Bioelectron, 2018, 116: 67-80.
  8. Sun B, Gou Y, Ma Y, et al. Investigate electrochemical immunosensor of cortisol based on gold nanoparticles /magnetic functionalized reduced graphene oxide [J].Biosens Bioelectron, 2017, 88: 55-62.
  9. Alam T, Khan S, Gaba B, et al. Nanocarriers as treatment modalities for hypertension[J].Drug Deliv, 2017, 24( 1) : 358-369.
  10. Li, L.; Chen, C.; Liu, H.; Fu, C.; Tan, L.; Wang, S.; Fu, S.; Liu, X.; Meng, X.; Liu, H. Multifunctional Carbon-Silica Nanocapsules with Gold Core for Synergistic Photothermal and Chemo-Cancer Therapy under the Guidance of Bimodal Imaging. Adv. Funct. Mater. 2016, 26, 4252-4261.
  11. Song, Y. Y.; Li, C.; Yang, X. Q.; An, J.; Cheng, K.; Xuan, Y.; Shi, X. M.; Gao, M. J.; Song, X. L.; Zhao, Y. D.; Chen, W. Graphene oxide coating core-shell silver sulfide@mesoporous silica for active targeted dual-mode imaging and chemo-photothermal synergistic therapy against tumors. J Mater Chem B 2018, 6, 4808-4820.
  12. Durgadas, C. V.; Sreenivasan, K.; Sharma, C. P. Bright blue emitting CuSe/ZnS/silica core/shell/shell quantum dots and their biocompatibility. Biomaterials 2012, 33, 6420-6429.
  13. Ma, B.; Wang, S.; Liu, F.; Zhang, S.; Duan, J.; Li, Z.; Kong, Y.; Sang, Y.; Liu, H.; Bu, W.; Li, L. Self-Assembled Copper-Amino Acid Nanoparticles for in Situ Glutathione "AND" H2O2 Sequentially Triggered Chemodynamic Therapy. J. Am. Chem. Soc. 2019, 141, 849-857.
  14. Li, L.; Guan, Y.; Liu, H.; Hao, N.; Liu, T.; Meng, X.; Fu, C.; Li, Y.; Qu, Q.; Zhang, Y.; Ji, S.; Chen, L.; Chen, D.; Tang, F. Silica nanorattle-doxorubicin-anchored mesenchymal stem cells for tumor-tropic therapy. ACS Nano 2011, 5, 7462-70.
  15. Zhang, Y.; Zhao, N.; Qin, Y.; Wu, F.; Xu, Z.; Lan, T.; Cheng, Z.; Zhao, P.; Liu, H. Affibody-functionalized Ag2S quantum dots for photoacoustic imaging of epidermal growth factor receptor overexpressed tumors. Nanoscale 2018, 10, 16581-16590.
  16. Meng, Z.; Wei, F.; Ma, W.; Yu, N.; Wei, P.; Wang, Z.; Tang, Y.; Chen, Z.; Wang, H.; Zhu, M. Design and Synthesis of “All-in-One” Multifunctional FeS2Nanoparticles for Magnetic Resonance and Near-Infrared Imaging Guided Photothermal Therapy of Tumors. Advanced Functional Materials 2016, 26, 8231-8242.
  17. Zhang, Y.; Zhang, Y.; Hong, G.; He, W.; Zhou, K.; Yang, K.; Li, F.; Chen, G.; Liu, Z.; Dai, H.; Wang, Q. Biodistribution, pharmacokinetics and toxicology of Ag2S near-infrared quantum dots in mice. Biomaterials 2013, 34, 3639-46.
  18. Qu, A.; Xu, L.; Sun, M.; Liu, L.; Kuang, H.; Xu, C. Photoactive Hybrid AuNR-Pt@Ag2S Core-Satellite Nanostructures for Near-Infrared Quantitive Cell Imaging. Advanced Functional Materials 2017, 27.
  19. Yang, T.; Tang, Y.; Liu, L.; Lv, X.; Wang, Q.; Ke, H.; Deng, Y.; Yang, H.; Yang, X.; Liu, G.; Zhao, Y.; Chen, H. Size-Dependent Ag2S Nanodots for Second Near-Infrared Fluorescence/Photoacoustics Imaging and Simultaneous Photothermal Therapy. ACS Nano 2017, 11, 1848-1857.
  20. Wang, G.; Liu, J.; Zhu, L.; Ma, X.; Wang, X.; Yang, X.; Guo, Y.; Yang, L.; Lu, J. Self-Destruction of Cancer Induced by Ag2 S Amorphous Nanodots. Small 2019, 15, e1902945.
  21. Liu, T.; Chao, Y.; Gao, M.; Liang, C.; Chen, Q.; Song, G.; Cheng, L.; Liu, Z. Ultra-small MoS2 nanodots with rapid body clearance for photothermal cancer therapy. Nano Research 2016, 9, 3003-3017.
  22. Meng, X.; Liu, Z.; Cao, Y.; Dai, W.; Zhang, K.; Dong, H.; Feng, X.; Zhang, X. Fabricating Aptamer-Conjugated PEGylated-MoS2/Cu1.8S Theranostic Nanoplatform for Multiplexed Imaging Diagnosis and Chemo-Photothermal Therapy of Cancer. Advanced Functional Materials 2017, 27.
  23. Wang, S.; Chen, Y.; Li, X.; Gao, W.; Zhang, L.; Liu, J.; Zheng, Y.; Chen, H.; Shi, J. Injectable 2D MoS2 -Integrated Drug Delivering Implant for Highly Efficient NIR-Triggered Synergistic Tumor Hyperthermia. Adv Mater 2015, 27, 7117-22.
  24. Chang, M.; Wang, M.; Wang, M.; Shu, M.; Ding, B.; Li, C.; Pang, M.; Cui, S.; Hou, Z.; Lin, J. A Multifunctional Cascade Bioreactor Based on Hollow‐Structured Cu2MoS4 for Synergetic Cancer Chemo‐Dynamic Therapy/Starvation Therapy /Phototherapy / Immunotherapy with Remarkably Enhanced Efficacy. Adv. Mater. 2019, 31.
  25. Goel, S.; Ferreira, C. A.; Chen, F.; Ellison, P. A.; Siamof, C. M.; Barnhart, T. E.; Cai, W. Activatable Hybrid Nanotheranostics for Tetramodal Imaging and Synergistic Photothermal/Photodynamic Therapy. Adv Mater 2018, 30.
  26. Gu, X.; Qiu, Y.; Lin, M.; Cui, K.; Chen, G.; Chen, Y.; Fan, C.; Zhang, Y.; Xu, L.; Chen, H.; Wan, J. B.; Lu, W.; Xiao, Z. CuS Nanoparticles as a Photodynamic Nanoswitch for Abrogating Bypass Signaling To Overcome Gefitinib Resistance. Nano Lett 2019, 19, 3344-3352.
  27. Wu, Z.-C.; Li, W.-P.; Luo, C.-H.; Su, C.-H.; Yeh, C.-S. Rattle-Type Fe3O4@CuS Developed to Conduct Magnetically Guided Photoinduced Hyperthermia at First and Second NIR Biological Windows. Advanced Functional Materials 2015, 25, 6527-6537.
  28. Liang, S.; Deng, X.; Chang, Y.; Sun, C.; Shao, S.; Xie, Z.; Xiao, X.; Ma, P.; Zhang, H.; Cheng, Z.; Lin, J. Intelligent Hollow Pt-CuS Janus Architecture for Synergistic Catalysis-Enhanced Sonodynamic and Photothermal Cancer Therapy. Nano Lett 2019, 19, 4134-4145.
  29. Hu, R.; Fang, Y.; Huo, M.; Yao, H.; Wang, C.; Chen, Y.; Wu, R. Ultrasmall Cu2-xS nanodots as photothermal-enhanced Fenton nanocatalysts for synergistic tumor therapy at NIR-II biowindow. Biomaterials 2019, 206, 101-114.
  30. Liu, Y.; Zhen, W.; Wang, Y.; Liu, J.; Jin, L.; Zhang, T.; Zhang, S.; Zhao, Y.; Yin, N.; Niu, R.; Song, S.; Zhang, L.; Zhang, H. Double Switch Biodegradable Porous Hollow Trinickel Monophosphide Nanospheres for Multimodal Imaging Guided Photothermal Therapy. Nano Lett 2019, 19, 5093-5101.
  31. Qin, M. Y.; Yang, X. Q.; Wang, K.; Zhang, X. S.; Song, J. T.; Yao, M. H.; Yan, D. M.; Liu, B.; Zhao, Y. D. In vivo cancer targeting and fluorescence-CT dual-mode imaging with nanoprobes based on silver sulfide quantum dots and iodinated oil. Nanoscale 2015, 7, 19484-92.
  32. Liu, T.; Wang, C.; Gu, X.; Gong, H.; Cheng, L.; Shi, X.; Feng, L.; Sun, B.; Liu, Z. Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer. Adv Mater 2014, 26, 3433-40.
  33. Chen, J.; Zhao, X.; Tan, S. J.; Xu, H.; Wu, B.; Liu, B.; Fu, D.; Fu, W.; Geng, D.; Liu, Y.; Liu, W.; Tang, W.; Li, L.; Zhou, W.; Sum, T. C.; Loh, K. P. Chemical Vapor Deposition of Large-Size Monolayer MoSe2 Crystals on Molten Glass. J Am Chem Soc 2017, 139, 1073-1076.
  34. Wu, S.; Liu, X.; Ren, J.; Qu, X. Glutathione Depletion in a Benign Manner by MoS2 -Based Nanoflowers for Enhanced Hypoxia-Irrelevant Free-Radical-Based Cancer Therapy. Small 2019, 15, e1904870.
  35. Tan, L.; Wang, S.; Xu, K.; Liu, T.; Liang, P.; Niu, M.; Fu, C.; Shao, H.; Yu, J.; Ma, T.; Ren, X.; Li, H.; Dou, J.; Ren, J.; Meng, X. Layered MoS2 Hollow Spheres for Highly-Efficient Photothermal Therapy of Rabbit Liver Orthotopic Transplantation Tumors. Small 2016, 12, 2046-55.
  36. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-9.
  37. Xing, T.; Mateti, S.; Li, L. H.; Ma, F.; Du, A.; Gogotsi, Y.; Chen, Y. Gas Protection of Two-Dimensional Nanomaterials from High-Energy Impacts. Sci Rep 2016, 6, 35532.
  38. Coleman, J. N.; Lotya, M.; O'Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J.; Shvets, I. V.; Arora, S. K.; Stanton, G.; Kim, H. Y.; Lee, K.; Kim, G. T.; Duesberg, G. S.; Hallam, T.; Boland, J. J.; Wang, J. J.; Donegan, J. F.; Grunlan, J. C.; Moriarty, G.; Shmeliov, A.; Nicholls, R. J.; Perkins, J. M.; Grieveson, E. M.; Theuwissen, K.; McComb, D. W.; Nellist, P. D.; Nicolosi, V. Two-dimensional nanosheets produced by liquid exfoliation of layered mate
  39. Yin, W.; Yan, L.; Yu, J.; Tian, G.; Zhou, L.; Zheng, X.; Zhang, X.; Yong, Y.; Li, J.; Gu, Z.; Zhao, Y. High-throughput synthesis of single-layer MoS2 nanosheets as a near-infrared photothermal-triggered drug delivery for effective cancer therapy. ACS Nano 2014, 8, 6922-33.
  40. Lee, Y. H.; Zhang, X. Q.; Zhang, W.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T.; Chang, C. S.; Li, L. J.; Lin, T. W. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv Mater 2012, 24, 2320-5.
  41. Cai, Z.; Shen, T.; Zhu, Q.; Feng, S.; Yu, Q.; Liu, J.; Tang, L.; Zhao, Y.; Wang, J.; Liu, B.; Cheng, H. M. Dual-Additive Assisted Chemical Vapor Deposition for the Growth of Mn-Doped 2D MoS2 with Tunable Electronic Properties. Small 2020, 16, e1903181.
  42. Qian, X.; Shen, S.; Liu, T.; Cheng, L.; Liu, Z. Two-dimensional TiS(2) nanosheets for in vivo photoacoustic imaging and photothermal cancer therapy. Nanoscale 2015, 7, 6380-7.
  43. Wang, S.; Li, K.; Chen, Y.; Chen, H.; Ma, M.; Feng, J.; Zhao, Q.; Shi, J. Biocompatible PEGylated MoS2 nanosheets: controllable bottom-up synthesis and highly efficient photothermal regression of tumor. Biomaterials 2015, 39, 206-17.
  44. Cheng Z, Al Zaki A, Hui JZ, et al. Multifunctional nanoparticles:cost versus benefit of adding targeting and imaging capabilities[J]. Science, 2012, 338( 6109) : 903-910.
  45. Kim B,Rutka JT,Chan WC. Nanomedicine[J]. N Engl J Med, 2010 (363): 2 434-443.
  46. Allen TM, Cullis PR. Drug delivery systems: entering the mainstream [J]. Science, 2004, 303(5665): 1 818-822.
  47. Wilczewska AZ, Niemirowicz K,Markiewicz KH,et al.Nanoparticles as drug delivery systems [J]. Pharmacol Rep, 2012, 64(5): 1 020-037.
  48. Cabrales P, Han G, Roche C, et al. Sustained release nitric oxide from long-lived circulating nanoparticles [J]. Free Radic Biol Med, 2010, 49(4):530-538.
  49. Sharma M, Sharma R, Jain DK. Nanotechnology based approaches for enhancing oral bioavailability of poorly water soluble antihypertensive drugs [J]. Scientifica (Cairo), 2016, 2016:8525679.
  50. Yongjun Q, Huanzhang S, Wenxia Z, et al. From changes in local RAAS to struc-tural remodeling of the left atrium:a beautiful cycle in atrial fibrillation[J]. Herz, 2015, 40(3):514-520.
  51. Lu Z, Scherlag BJ, Lin J, et al. Autonomic mechanism for initiation of rapid firing from atria and pulmonary veins:evidence by ablation of ganglionated plexi[J]. Cardiovasc Res, 2009, 84(2):245-252.
  52. Yu L, Scherlag BJ, Dormer K, et al. Autonomic denervation with magnetic nanop-articles[J]. Circulation, 2010, 122(25):2653-2659.
  53. Madigan M, Atoui R. Therapeutic use of stem cells for myocardial infarction[J]. Bioengineering (Basel), 2018, 5(2):28.
  54. Zhu K, Li J, Wang Y, et al. Nanoparticles-assisted stem cell therapy for ischemic heart disease[J]. Stem Cells Int, 2016, 2016:1384658.
  55. Binsalamah ZM, Paul A, Khan AA, et al. Intramyocardial sustained delivery of placental growth factor using nanoparticles as a vehicle for delivery in the rat in-farct model[J]. Int J Nanomedicine, 2011, 6:2667-2678.
  56. Nakano Y, Matoba T, Tokutome M, et al. Nanoparticle-mediated delivery of irbe-sartan induces cardioprotection from myocardial ischemia-reperfusion injury by antagonizing monocyte-mediated inflammation[J]. Sci Rep, 2016, 6:29601.
  57. Galagudza M, Korolev D, Postnov V, et al. Passive targeting of ischemic-reper-fused myocardium with adenosine-loaded silica nanoparticles. Int J Nano-medicine, 2012, 7:1671-1678.
  58. Torchilin VP. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery[J]. Nat Rev Drug Discov, 2014, 13(11):813-827.
  59. Chaudhary MA, Guo LW, Shi X, et al. Periadventitial drug delivery for the pre-vention of intimal hyperplasia following open surgery[J]. J Control Release, 2016, 233:174-180.
  60. Amezcua R, Shirolkar A, Fraze C, et al. Nanomaterials for cardiac myocyte tissue engineering[J]. Nanomaterials(Basel), 2016, 6(7):133.
  61. Kim DH, Kim P, Song I, et al. Guided three-dimensional growth of functional car- diomyocytes on polyethylene glycol nanostructures[J]. Langmuir, 2006, 22(12):5419-5426.
  62. Malki M, Fleischer S, Shapira A, et al. Gold nanorod-based engineered cardiac patch for suture-free engraftment by near IR[J]. Nano Lett, 2018, 18(7):4069-4073.
  63. Singelyn J, DeQuach J, Seif-Naraghi S, et al. Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering[J]. Biomaterials, 2009, 30(29):5409-5416.
  64. Hernandez MJ, Christman KL. Designing acellular injectable biomaterial thera-peutics for treating myocardial infarction and peripheral artery disease[J]. JACC Basic Transl Sci, 2017, 2(2):212-226.
  65. Evans B, Hocking K, Osgood M, et al. MK2 inhibitory peptide delivered in nan-opolyplexes prevents vascular graft intimal hyperplasia[J]. Sci Transl Med, 2015, 7(291):291ra295.
  66. Li H, Chai S, Dai L, et al. Collagen external scaffolds mitigate intimal hyperplasia and improve remodeling of vein grafts in a rabbit arteriovenous graft model[J]. Biomed Res Int, 2017, 2017:7473437.
  67. Robinson E, Kaushal S, Alaboson J, et al. Combinatorial release of dexametha-sone and amiodarone from a nano-structured parylene-C film to reduce perioper-ative inflammation and atrial fibrillation[J]. Nanoscale, 2016, 8(7):4267-4275.
  68. Burkhardt J, Natale A. New technologies in atrial fibrillation ablation[J]. Circu-lation, 2009, 120(15):1533-1541.
  69. DaCosta A, Guichard J, Maillard N, et al. Substantial superiority of Niobe ES over NiobeⅡsystem in remote-controlled magnetic pulmonary vein isolation[J]. Int J Cardiol, 2017, 230:319-323.
  70. Qian P, DeSilva K, Kumar S, et al. Early and long-term outcomes after manual and remote magnetic navigation-guided catheter ablation for ventricular tachycar- dia[J]. Europace, 2018, 20(suppl 2):ii11-ii21.
  71. Grodanz E. Robotic mitral valve repair[J]. J Cardiovasc Nurs, 2015, 30(4):325-331.