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ABSTRACT 

Carbon emissions trading is essential for reducing carbon emissions, and its role in regional carbon unlocking needs 

further clarification. This study uses the difference-in-differences (DID) model and synthetic control model (SCM) 

to evaluate the carbon unlocking effect of China’s six pilot carbon trading provinces. This study found that (1) carbon 

lock-in effects in China are mainly influenced by technology lock-in and fixed input lock-in; (2) each province’s 

overall carbon lock-in level presents a decreasing trend yearly, and the regional distribution presents characteristics 

of “low in the east and high in the west”; (3) carbon emissions trading pilot policies effectively promote the carbon 

unlocking effect in pilot regions overall, with Guangdong having the most significant unlocking effect. Conversely, 

Beijing, Hubei, Chongqing, and Shanghai also had different degrees of carbon unlocking. Finally, (4) an assessment 

of impact mechanisms indicates that technology and institutions have a significant mediating role in effectively 

promoting carbon unlocking under the carbon trading policy. Conversely, social behavior has an inverse effect, and 

fixed assets are not affected by the policy. This study demonstrates the carbon unlocking effect of carbon emissions 

trading and provides a quantitative reference for implementing carbon emissions trading policies and determining 

carbon unlocking paths. 
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1. Introduction 

According to the International Energy Agency (IEA), China’s total CO2 emissions reached 54.07 tons in 2005 

(IEA, 2021b), surpassing those of the United States as the world’s top carbon emitter. By 2021, China’s CO2 

emissions have exceeded 11.9 billion tons, accounting for 33% of the total global CO2 emissions (IEA, 2021a). 

Carbon emissions can be reduced by strengthening environmental policies (Qin et al., 2021). Consequently, the 

Chinese government has adopted a series of complex, flexible, authoritative, and low-cost policy instruments to 

reduce carbon emissions from conventional energy systems (Li and Taeihagh, 2020). In 2013, China launched pilot 

carbon emissions trading policies in Beijing, Tianjin, Shanghai, Chongqing, Hubei, Guangdong, and Shenzhen1 . 

These policies first began with the power sector, which have the highest cost of emissions reduction (Lin and Jia, 

2017) and incorporated different sectors according to each pilot project’s economic structure and other 

characteristics, making exploratory attempts to reduce carbon emissions and achieve remarkable results. Since 

December 31, 2021, more than 2,900 emitting enterprises and units were included in the seven pilot carbon 

markets. Moreover, a total of approximately 8 billion tons of carbon emission allowances (CEA) were allocated. This 

resulted in a cumulative turnover of 483 million tons of CEA, and a turnover of RMB 8.622 billion. The cumulative 

volume of the CEA traded in the market reached 179 million tons, with a turnover of RMB 7.684 billion.  

The reason for the rapid growth of China’s carbon emissions is overreliance on the carbon-intensive fossil fuel-

based energy system over decades of reform and opening up and the rebound effect of China’s energy economy. 

This eventually evolved into a “carbon lock-in” based on a “technology-institutional complex” (Karlsson, 2012). 

Carbon lock-in refers to the long-term persistence of fossil fuel-based infrastructure or systems over time. This 

prevents a shift to more efficient and energy-saving technologies or non-fossil fuel energy sources, including 

renewable energy (Unruh, 2000). Hence, carbon lock-in often limits low-carbon technological, economic, political, 

and social efforts at the source, which will ensure that China’s total carbon emissions continue to increase. The 

carbon trading market is considered a combined policy to reduce CO2 emissions and mitigate climate warming. 

Currently, more than 20 carbon markets operate globally and can be tailored according to each country’s 

development level (Kiss and Popovics, 2021). The relationship between carbon trading and carbon lock-in is mainly 

reflected in the following. First, carbon trading allows high-carbon emitting companies to purchase carbon 

allowances from low-carbon emitting companies, thereby reducing carbon emissions. Owing to the considerable 

task of reducing carbon emissions and the time crunch, carbon allowances are expected to gradually tighten. Thus, 

an increase in carbon trading prices is inevitable. This will increase cost pressure on enterprises with high carbon 

lock-in, high reliance on carbon-based energy systems, backward technology, and a shortage of allowances. However, 

it will bring significant benefits to enterprises that have already achieved carbon unlocking, advanced technology, 

and a surplus of allowances. Second, carbon trading is an institutional tool that utilizes policies and market-based 

means to promote and lead high-carbon emission enterprises to realize the conversion of old and new kinetic 

energy for enterprise development at low cost. These force enterprises to replace their outdated production 

capacities, realize low-carbon transformation, and upgrade to achieve carbon unlocking. ETS can facilitate the 

transition from large-scale coal-fired power generation technologies to low-carbon power generation technologies 

(Rogge and Hoffmann, 2010). 

Carbon emissions trading policies can theoretically affect carbon lock-in to a certain extent; however, whether 

this effect exists and its specific degree of impact remain unknown. Hence, this study will use China’s provinces as 

its research object to conduct the following explorations: (1) quantitatively measure the extent of carbon lock-in in 

Chinese provinces; (2) explore the effect of China’s carbon emissions trading pilot policies on Chinese carbon 

unlocking; and (3) assess the heterogeneity of carbon unlocking across pilot regions, which is helpful for 

 
1 Carbon emissions trading market in China is briefly introduced in Appendix A. 
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understanding the effect of ETS in different regions. 

Our study contributes to the literature in two ways. First, we improved the indicator system for measuring 

carbon lock-in by incorporating enterprise nationalization and urbanization levels into the system. We extend the 

applicability of the projection tracing model to panel data. Second, we link carbon emissions trading policies with 

degree of carbon lock-in and use policy effect evaluation models to evaluate the effect of carbon emissions trading 

on carbon lock-in. Finally, we explore both overall effects and differences in the effects of different pilots.  

The remainder of this paper is structured as follows. In Section 2, we review related literature on carbon 

unlocking. This is followed by a description of the research method in Section 3. Section 4 presents empirical results, 

and Section 5 discusses the empirical results. Finally, Section 6 concludes the study. 

2. Literature review 

“Carbon lock-in” was first proposed by the Spanish scholar Unruh in 2000 (Unruh, 2000). The concept is based 

on the coevolution of carbon-based energy technologies and institutional systems, driven by increasing returns to 

scale, strengthening the system through continuous feedback, and resulting in a “technology-institution complex” 

(TIC). Over time, technological or institutional changes are unlikely to occur without external drivers as the energy 

system develops path dependencies to produce equilibrium.  

The causes of carbon lock-ins are similar in countries worldwide. Some scholars (Janipour et al., 2020; Seto et 

al., 2016; Susskind et al., 2020; Xihua et al., 2013) have concluded that the mechanism of carbon lock-in is a 

combination of infrastructure, technology, institutions, and social behavior. Specific strategies for unlocking carbon 

have also been suggested. More than 50 barriers to technology deployment in the carbon unlocking process were 

identified and described, which could be addressed more effectively through policy (Brown et al., 2008). 

Some scholars have explored the state of carbon lock-in at the industrial and sectoral levels, and some have 

analyzed the causes of carbon lock-in in the Spanish wind and solar industries (McKie and Galloway, 2007). Carley 

(2011) explored the driving factors of carbon lock-in reduction in the US electricity sector. Driscoll (2014) examined 

carbon locking in the transport sector of two similar cities in Denmark and in the US. Wang et al. (2020) studied the 

characteristics and influencing factors of carbon lock-in in China’s manufacturing sector. Bauer et al. (2022) 

examined carbon lock-in at each stage of the entire plastic value chain and suggested means of mitigation . From 

this perspective, scholars have primarily focused on high carbon-emitting industries to target carbon lock-in 

research. Hence, our study assesses the causes, evolutionary characteristics, and influencing factors of carbon lock-

in in each sector as the main research content of industry carbon lock-in.  

Some Chinese scholars have conducted regional studies on carbon lock-in at provincial and municipal levels in 

China (Long et al., 2016; Xu et al., 2022; Yingzhi and Yan, 2018). Using spatial econometric models such as the Moran 

index, they found that the spatial distribution of carbon-locking effects in China is significantly unbalanced. This 

presents pattern of low in the east and high in the west, aggregation characteristics, and a significant spatial 

spillover effect. 

 The quantitative analysis of carbon lock-in can be broadly divided into two categories of existing research. 

The first measures the level of carbon lock-in quantitatively. The primary methods include carbon overload rate (Xu 

et al., 2022), input–output (Jin and Yingzhi, 2015), construction of indicator systems (Niu and Liu, 2021), and data 

envelopment analysis (DEA) models (Zhu, 2018). The second explores the factors influencing carbon locking using 

the partial least squares (PLS) path modeling method (Jin and Yingzhi, 2015); stochastic impacts by regression on 

population, affluence, and technology (STIRPAT) model (Wang et al., 2013); and the geographically and temporally 

weighted regression (GTWR) model (Wang et al., 2020).  

Simultaneously, some scholars have evaluated the effectiveness of China’s carbon emissions trading policy. The 
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main methods include the difference-in-differences (DID) model (Xuan et al., 2020; Zhang and Zhang, 2020), 

propensity score matching differences-in-differences (PSM-DID) model (Pan et al., 2022; Wang et al., 2022a), 

synthetic control method (SCM) (Wang et al., 2022b), and computable general equilibrium (CGE) model (Zhang et 

al., 2020; Zhang et al., 2017). 

These studies found that carbon emissions trading can significantly reduce carbon emissions of pilot cities and 

has sustainable effect. This study also found that carbon emissions trading in China contains far-reaching 

implications for the economy, energy, and environment. Carbon emissions trading is helpful for reducing carbon 

emission costs and decreasing energy consumption and carbon emissions. This may have different effects on 

different provinces. 

Research on carbon lock-in and credits has made significant progress. However, deficiencies remain in the 

following aspects. (1) The indicators used for measuring carbon lock-in are not sufficiently comprehensive. Most 

methods for measuring carbon lock-in use carbon emissions and sinks as leading indicators. Other indicators 

affecting degree of carbon lock-in are often ignored, which may lead to carbon lock-in measurement values that 

cannot fully reflect the degree of carbon lock-in. (2) The effects of carbon emissions trading policies on carbon 

unlocking has not received much attention. Most studies have focused on the ultimate effects of policies on CO2 

emissions. Limiting the effect of the policy on end-of-pipe treatment may hinder tackling carbon emissions as the 

root cause, resulting in the long-term effect of the policy, which may not be obvious. (3) The heterogeneous effects 

of different carbon emissions trading pilots have not been adequately studied. 

Hence, based on annual panel data from 30 provinces in China from 2007 to 2019, this study first constructs a 

carbon lock-in measurement index system. Moreover, it calculates carbon lock-in effect values of 30 provinces over 

13 years using the projection pursuit evaluation model based on the real-coded accelerating genetic algorithm 

(RAGA-PP model). Then, the effects of the carbon emissions trading policy on the overall and individual carbon lock-

in levels in the pilot provinces were analyzed using the difference-in-differences (DID) model and the synthetic 

control method (SCM). 

3. Research methodology and data presentation 

Fig. 1 presents the research method framework of this study. 

3.1. Carbon lock-in indicator system construction 

Regarding existing studies (Erickson et al., 2015; Niu and Liu, 2021), this study follows comprehensiveness, 

validity, and independence and is based on data availability. We established the following carbon lock-in 

measurement and evaluation index system. 

(1) Indicators for evaluating level of fixed-input carbon lock-in 

Existing research suggests that long-term capital stocks (LLCS) (e.g., infrastructure and buildings) have a 

significant and long-lasting effect on greenhouse gas emissions. LLCS create carbon lock-in and potentially prevent 

rapid decarbonization of energy systems (Fisch-Romito et al., 2021). This study selects the ratio of the value-added 

of the secondary industry to GDP to reflect the extent to which the industrial structure of the high-carbon secondary 

sector deepens regional carbon lock-in. We selected three fixed asset-related indicators to reflect the use of basic 

equipment. 

(2) Indicators for evaluating level of technology carbon lock-in 

Once a particular technology becomes an enterprise’s core competitiveness, the enterprise will maintain the 

existing technology based on an incremental payoff mechanism, preventing the adoption and diffusion of other low-

carbon technologies. This study measures the level of technology lock-in from the two aspects—the existing energy  
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Figure 1. The process of studying how carbon emissions trading policies affect carbon lock-in methods. 

technology and technological innovation and R&D. 

(3) Indicators for evaluating level of system carbon lock-in 

Governments can alleviate the degree of carbon lock-in through financial subsidies and low-carbon regulations. 

Additionally, state-controlled enterprises are directly related to state interests, which usually lead to a softening of 

state-owned enterprises’ energy-saving and emission-reduction constraints, which is not conducive to carbon 

unlocking. 

(4) Indicators for evaluating level of social and behavioral carbon lock-in 

The behavior of individuals and societies with energy consumption or services also determines the level of 

carbon lock-in at a fundamental level. Urbanization determines primary energy demand for the next few decades 

after the completion of the region. The per capita disposable income of urban residents reflects their income level 

and the living standard of urban residents. The volume of passenger transportation and civilian automobile 

ownership are used to measure scale of development of public and personal transport in the region, and urban 

natural gas penetration reflects residential household energy use. 

3.2. Carbon lock-in effect value assessment method—RAGA-PP model construction 
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This study first used the RAGA-PP model to downscale the indicator system by assigning weights to more 

objectively explore the carbon lock-in level of China’s regional carbon emissions trading. Finally, it obtained the 

value of the carbon lock-in effect for 30 Chinese provinces from 2007 to 2019. 

The sample is set as𝑥𝑖𝑗(𝑡) , 𝑖 = 1, 2, … , 𝑛;  𝑗 = 1, 2, … , 𝑚;  𝑡 = 1, 2, … , 𝑇, where 𝑥𝑖𝑗(𝑡)denotes the jth indicator 

for the ith province in the tth year. As different evaluation indicators have different measurement units, the original 

values of the evaluation indicators were standardized using the range method.  

Let 𝑎 =  { 𝑎(1), 𝑎(2), … , 𝑎(𝑚) } represent the projection direction vector, which can be considered the weight 

vector of the carbon lock-in factors. The one-dimensional projection value of the 𝑖 − th province in the 𝑡 − thyear 

in this direction is as follows: 

𝑧𝑖𝑗(𝑡) = ∑ 𝑎(𝑗)𝑥𝑖𝑗(𝑡)

𝑚

𝑗=1

(𝑗 = 1,2, … , 𝑚) (1) 

To optimize 1D projection values, the projection indicator function was constructed as follows:  

𝑇(𝑎) = 𝑆𝑍𝐷𝑍 (2) 

 Eq. (4), 𝑆𝑍and𝐷𝑍 refer to the standard deviation and local density of the total projection value, respectively. 

The specific calculation formula is as follows:  

𝑆𝑍 = √∑ ∑
(𝑧𝑖(𝑡) − �̄�)2

𝑛 − 1

𝑛

𝑖=1

𝑇

𝑡=1

(3) 

𝐷𝑍 = ∑ ∑ ∑[𝑅 − 𝑟𝑖𝑗(𝑡)]

𝑚

𝑗=1

• 𝜊[𝑅 − 𝑟𝑖𝑗(𝑡)]

𝑛

𝑖=1

𝑇

𝑡=1

(4) 

Eq. (5), �̄�refers to the mean of the series, 𝑟𝑖𝑗(𝑡)  =  | 𝑧(𝑖)－𝑧(𝑗) | refers to the intersample distance, 𝑅 is the 

window radius of the local density, and 𝑜(𝜏)  =  𝑜(𝑅－𝑟𝑖𝑗) is the unit step function, which is 1 when 𝑅 ≫ 𝑟𝑖𝑗 and 

0 if otherwise.  

The search for best projection direction is transformed into a nonlinear optimal solution problem. We express 

the objective function and constraints as follows:  

{

𝑚𝑎𝑥: 𝑇 (𝑎) = 𝑆𝑍𝐷𝑍

𝑠. 𝑡. : ∑ 𝑎2(𝑗)

𝑚

𝑗=1

= 1, 𝑎 ∈ [0,1]
(5) 

According to the previous step, the best projection direction is 𝑎(𝑗), which can be substituted into the function 

𝑧(𝑖) to obtain the comprehensive projection value.  

Traditional optimization methods do not easily solve complex nonlinear optimization problems with the 

projection vectors as the optimization variable. Hence, this study uses the real-coded accelerating genetic algorithm 

for high-dimensional global optimization. 

This study had a 30 × 13 sample size and 17 indicators. Indicator data were standardized, and the RAGA-PP 

model was established by applying MATLAB programming. The parent’s initial population size is selected as 𝑛 =

400, crossover probability as 𝑃𝑐 = 0. 8, the mutation probability 𝑃𝑚 = 0. 2, number of outstanding individuals as 

20, and the acceleration number as 7. As the genetic algorithm is a random search algorithm, the approximate 

optimal solution is obtained by random iteration; hence, the final result of each calculation will be different, but the 
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overall trend remains the same. Therefore, this study calculates projection objective function 50 times to select the 

optimal result. 

3.3. Evaluation method for the overall carbon unlocking level of carbon emissions trading pilot—DID model 

The difference-in-differences (DID) based on “natural experiments” is widely used in policy effect assessment. 

Using fixed-effect estimation, we can largely avoid the endogeneity problem associated with policy as an 

explanatory variable. Moreover, we can control for the influence of unobservable individual heterogeneity on the 

explanatory variable (Angrist and Krueger, 1999). Therefore, this study uses the DID model to quantitatively assess 

how carbon emissions trading impact regional carbon lock-in. 

This study constructs a two-way fixed effects (TWFE) model incorporating joint province-time fixed effects 

into the basic model. We define the proposed DID model as follows: 

𝑦𝑖𝑡 = 𝛽0 + 𝛽1𝑡𝑟𝑒𝑎𝑡𝑖 + 𝛽2𝑡𝑖𝑚𝑒𝑡 + 𝛽3(𝑡𝑟𝑒𝑎𝑡𝑖 × 𝑡𝑖𝑚𝑒𝑡) + 𝛽𝑥𝑖𝑡 + 𝜇𝑡 + 𝜂𝑖 + 𝜀𝑖𝑡 (6) 

In Eq. (8), 𝑦𝑖𝑡 represents the carbon lock-in effect for the ith province in the t-th year; 𝑡𝑟𝑒𝑎𝑡𝑖 represents the 

experimental group dummy variable, which is 1 when the i-th province is the experimental group and 0 when the 

i-th province is the control group; 𝑡𝑖𝑚𝑒𝑡 represents the experimental period dummy variable, which is 1 when the 

carbon trading policy was implemented, and 0 if otherwise; 𝑡𝑟𝑒𝑎𝑡𝑖 ∗ 𝑡𝑖𝑚𝑒𝑡 represents the joint province and time 

fixed effects; 𝑥𝑖𝑡 refers to time-varying control variables which could impact carbon lock-in at province-level; 𝜇𝑡 

is the time fixed effect; 𝜂𝑡 is the area fixed effect; and 𝜀𝑖𝑡 is the disturbance term. The interaction term coefficient 

𝛽3 is the focusing coefficient and represents the impact of the national pilot carbon emissions trading policy on the 

carbon lock-in effect. 

3.4. Individual carbon unlocking level evaluation method for carbon emissions trading pilot—SCM model 

The synthetic control model (SCM) is a powerful tool for exploring the heterogeneity of carbon unlocking 

effects across pilots (Abadie and Gardeazabal, 2003). The synthetic control method essentially utilizes the pilot area 

as the treatment group, finds appropriate weight through predictor variables, weighs average value of the provinces 

that have not implemented the carbon emissions trading policy, and establishes the “counterfactual” control group. 

Thereafter, we compared the difference in carbon lock-in values between the treatment and synthetic control 

groups after policy implementation (i.e., policy effect). 

We assume that observations are available for 𝑁 + 1  areas for 𝑇  periods, with the first area (the pilot 

province) affected by the policy at 𝑇0, and the other 𝑁 areas as a potential control set for the first area. 

{
𝑦𝑖𝑡(0), Potential consequences of not implementing the policy

𝑦𝑖𝑡(1), Potential consequences of implementing the policy
(7) 

Then, the actual observations 𝑦𝑖𝑡  of 𝑖 = 1,2, … , 𝑁 + 1  for the province for the period 𝑡 = 1,2, … , 𝑇  are as 

follows:  

𝑦𝑖𝑡 = 𝑦𝑖𝑡(0) + 𝛼𝑖𝑡𝐷𝑖𝑡,  where 𝐷𝑖𝑡 = {
1,  when 𝑖 = 1 and 𝑡 > 𝑇0

0,  otherwise
(8) 

As the “counterfactual” outcome, 𝑦1𝑡(0) is not observable for the target of the intervention after the policy is 

implemented, synthesizing 𝑦1𝑡(0)  is necessary by using the pre-intervention information to select the optimal 

weights 𝑊∗ = (𝑤2
∗, … , 𝑤𝑁+1

∗ ) for control unit 𝑖. For any 𝑖, 𝑤𝑖 ≥ 0 and ∑ 𝑤𝑖
𝑁+1
𝑖=2 = 1 , and the specific equations 

are synthesized as follows:  

�̂�𝑖𝑡(0) = 𝜕𝑡 + 𝜃𝑡𝑋𝑖 + 𝜆𝑡𝜇𝑖 + 𝜀𝑖𝑡 (9) 
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∑ 𝑤𝑖𝑦𝑖𝑡

𝑁+1

𝑖=2

= 𝜕𝑡 + 𝜃𝑡 ∑ 𝑤𝑖𝑋𝑖

𝑁+1

𝑖=2

+ 𝜆𝑡 ∑ 𝑤𝑖𝜇𝑖

𝑁+1

𝑖=2

+ ∑ 𝑤𝑖𝜀𝑖𝑡

𝑁+1

𝑖=2

(10) 

Here, 𝑋𝑖 is the control variable, 𝜕𝑡 is the time trend, 𝜆𝑡 is a (1 × F)-dimensional unobserved common factor, 

𝜇𝑖  is a (F × 1)-unobserved dimensional area fixed effects error term, and 𝜀𝑖𝑡 is a temporary shock unobserved in 

each area with a mean value of 0. Currently, this set of optimal weights 𝑊∗ = (𝑤2
∗, … , 𝑤𝑁+1

∗ ) needs to have good 

historical properties, satisfying the following condition:  

∑ 𝑤𝑖
∗𝑦𝑖1

𝑁+1

𝑖=2

= 𝑦11, ⋯ , ∑ 𝑤𝑖
∗𝑦𝑖𝑇0

𝑁+1

𝑖=2

= 𝑦1𝑇0
 𝑎𝑛𝑑 ∑ 𝑤𝑖

∗𝑦𝑖

𝑁+1

𝑖=2

= 𝑦1 (11) 

Abadie et al. (Abadie et al., 2010) prove that for 𝑇0 < 𝑡 < 𝑇, we can use ∑ 𝑤𝑖
∗𝑦𝑖𝑡

𝑁+1
𝑖=2  as an unbiased estimate 

of 𝑦1𝑡(0) to approximate 𝑦1𝑡(0), such that the effect of estimating the policy based on the synthetic estimate is 

thus as follows:  

�̂�1𝑡 = 𝑦1𝑡 − �̂�1𝑡(0) = 𝑦1𝑡 − ∑ 𝑤𝑖
∗𝑦𝑖𝑡

𝑁+1

𝑖=2

, 𝑡 ∈ {𝑇0 + 1, … , 𝑇} (12) 

3.5. Data source and processing 

We obtained data from the China Statistical Yearbook, China Science and Technology Statistical Yearbook, China 

Fixed Assets Statistical Yearbook, China Statistical Yearbook on Environment, and CEADs Carbon Emissions 

Database (Guan et al., 2021; Shan et al., 2018; Shan et al., 2020; Shan et al., 2016). Sample data in this study included 

observation records of 30 provinces and municipalities in China from 2007 to 2019, with a sample size of 390. Tibet, 

Taiwan, Hong Kong, and Macao were excluded because of a lack of data for these regions. In 2018 and 2019, the 

proportion of depreciation of fixed assets in GDP, number of scientific research professionals in state-owned 

institutions, and ratio of investment in environmental pollution control to GDP was not published. This study used 

exponential smoothing to fill in the data. 

4. Results and analysis 

4.1. Measurement analysis of the regional carbon lock-in effect 

Based on the RAGA-PP model, we calculated the projected intensity of 17 carbon lock-in indicators and carbon 

lock-in effect values of 30 Chinese provinces (municipalities) from 2007 to 2019 (Fig. 2). 

First, technology and institutional lock-in have the most significant influence on China’s comprehensive 

evaluation value of the carbon lock-in effect. Fig. 2(I) presents five indicators with a projection direction above 0.3, 

in descending order—urban natural gas penetration (D4), state-controlled enterprises level (C4), transaction value 

in the technical market (B4), carbon emission intensity of fixed assets (A3), and internal expenditure of R&D (B3)—

which have a large contribution rate in the measurement of the carbon lock-in effect and are the main factors 

influencing level of carbon locking. Within the social behavior domain, only the indicator of urban natural gas 

penetration significantly contributes to level of carbon lock-in, while the rest contribute only weakly. However, 

residential household energy use is already at its limit and unlocking carbon from residential household energy use 

is difficult. Therefore, to achieve carbon unlocking, technological innovation is necessary, with state-owned 

enterprises takeleading carbon unlocking. 

Second, the degree of carbon lock-in in China’s provinces presents an overall decreasing yearly trend . Fig. 2(II) 



Wang et al.                                           Journal of Economic Statistics 2023 1(1) 125-146 

 

 

9 

 

 

 

shows that the value of the carbon lock-in effect in 30 provinces (municipalities) decreased by 0.433 in 2007–2019, 

and 12 provinces (municipalities) had a reduction of 0.5 or more in the carbon lock-in effect value. Among them, 

Guangdong Province had the best carbon unlocking impact, with a decrease of 0.876, and Liaoning Province had 

the least significant carbon unlocking effect, with a 0.138 reduction. The degree of carbon lock-in in most provinces 

presented a slight upward trend in 2011–2012 and 2017–2018, but declined in the following years. Overall, China’s 

carbon lock-in has presented an overall decreasing trend over 13 years, from 2007 to 2019, which indicates a good 

result for the sustainable development of low-carbon energy. 

 

Figure 2. Projection direction of comprehensive evaluation index of carbon lock-in effect and trend of carbon 

lock-in efficiency values in China. 

 

Figure 3. Development of carbon lock-in in each province (municipalities) in China. 

Fig. 3 presents the distribution and ranking of the average carbon lock-in of China’s 30 provinces 

(municipalities) before and after implementing carbon emissions trading in 2013. Fig. 3 shows that the geographical 

distribution of the carbon lock-in effect is characterized by “low in the east and high in the west.” Fig. 3(I) indicates 
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that, from 2007 to 2012, only Guizhou and Gansu had an average projection of the carbon lock-in effect of over 2.5, 

while Guizhou reached 2.548. The average predicted value of carbon lock-in in eight provinces was between 2.2 and 

2.5, mostly in the western region. The lowest value for the carbon lock-in effect is 1.574 in Jiangsu. The mean 

projection of the carbon lock-in effect was 1.6 to 1.9 in seven provinces, mainly in the eastern region. Fig. 3(II) 

indicates that, from 2013 to 2019, Qinghai had the highest projected mean value of carbon lock-in effect at 2.259. 

Conversely, Jiangsu had the lowest projected mean value of carbon lock-in effect at 1.302. Although degree of carbon 

lock-in decreased and changed slightly in ranking for all provinces, the western region still had the highest level of 

carbon lock-in. 

The six pilot regions for carbon credits saw a slight change in the ranking of each province in projection average 

of the carbon lock-in effect, before and after implementing carbon trading credits in 2013. Specifically, Beijing 

dropped three places, Shanghai dropped one place, Guangdong dropped five areas, and Hubei dropped seven places; 

conversely, Tianjin and Chongqing moved up three and four places, respectively. Whether carbon trading policy 

influences these ranking changes needs further examination. This study uses the DID and SCM models for specific 

analyses. 

4.2. Overall analysis of the carbon unlocking effect of carbon emissions trading 

In this study, the first batch of China’s carbon emissions trading pilot policy is considered as a “quasi-natural 

experiment,” with six provinces—Beijing, Tianjin, Shanghai, Chongqing, Hubei, and Guangdong—as the 

experimental group. Moreover, Shenzhen is included in the Guangdong experimental group as it is part of 

Guangdong province. The remaining non-pilot provinces served as the control group. 

In October 2011, the National Development and Reform Commission (NDRC) issued a notice on the launch of 

pilot carbon emissions trading. Moreover, it marks the official launch of China’s pilot carbon emissions trading 

markets, with seven operating in the second half of 2013. Therefore, year 2013 is established as the time point (i.e., 

2007–2012) is when the policy is not implemented, and 2013–2019 is when the policy is implemented. The overall 

carbon unlocking effect of policy implementation is analyzed below using the DID method. 

This study selected the following control variables by referring to the existing literature (Liwen et al., 2020). 

(1) Foreign direct investment (FDI), expressed by FDI as a share of GDP, and the choice of technology for bilateral 

financing significantly impact on global decarbonization and future climate change (Chen et al., 2021). Therefore, 

FDI, which represents bilateral financing, was used as a control variable. (2) Regional construction level (RCL) was 

expressed as cement production. Owing to the large amount of cement used in regional construction, the 

decomposition of calcium carbonate during cement production generates CO2, which increases degree of carbon 

lock-in. 

4.2.1. Parallel trend hypothesis testing 

While DID can largely avoid the problem of reverse causality and endogeneity of policy effects, its use has 

substantial qualification in that the treatment and control groups have an identical trend before the satisfaction 

event. We first tested the hypothesis of parallel trends in the carbon lock-in coefficients of the treatment and control 

groups. 

Fig. 4(I) results indicate that the trend of the carbon lock-in degree for the treatment and control groups from 

2007 to 2013 is basically the same. Conversely, from 2013 to 2019, the carbon lock-in degree for provinces 

implementing carbon emissions trading was significantly lower than that for provinces not implementing carbon 

emissions trading. Fig. 4(II) presents the results of the gap in the carbon lock-in effect values of the treatment and  
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Figure 4. Parallel trend test for carbon sequestration in treatment and control groups. 

control groups based on the event analysis method. Before the pilot carbon emissions trading work was 

implemented in 2013, the gap in the carbon lock-in degree between the treatment and control groups were close to 

zero. However, after implementing the pilot carbon emissions trading work in 2013, the gap increased significantly, 

and impact trend presented a trend that first increased and then decreased. Based on the test results above, we 

conclude that the sample satisfies the DID model prerequisites. 

4.2.2. Empirical results of the DID 

Based on the verification that the sample satisfies the parallel trend test of carbon lock-in, this study uses the 

fixed-effects DID method to assess the effect of implementing a pilot carbon trading policy. To minimize regression 

estimation bias and achieve effective comparison between the results, this study selected model (1) without the 

time and individual fixed effects without control variables, model (2) with individual fixed effects only, and model 

(3) with individual fixed effects and time fixed effects as a two-way fixed effects model, model (4) with individual 

fixed effects and the introduction of control variables, and model (5) with two-way fixed effects and the introduction 

of control variables for estimation. Table 1 presents the results. 

Table 1. Differences-in-Differences model regression results. 

 (1) (2) (3) (4) (5) 

Treat*post 
-0.0382 -0.0382 -0.0382** -0.0518** -0.0438*** 
(-0.63) (-1.56) (-2.10) (-2.33) (-2.60) 

FDI 
   -0.256 -1.534*** 

   (-0.66) (-5.05) 

RCL 
   -0.259*** -0.138*** 

   (-8.78) (-5.30) 

cons 
2.105*** 2.059*** 2.180*** 2.218*** 2.288*** 
(105.65) (286.81) (166.77) (109.50) (125.11) 

N 390 390 390 390 390 
R2 0.284 0.566 0.760 0.643 0.796 
individual fixed NO YES YES YES YES 
time fixed NO NO YES NO YES 
control variables NO NO NO YES YES 

Notes: t-statistics in parentheses; *p<0.10, **p<0.05, ***p<0.01.  

Our regression results show that the interaction term coefficients of the core explanatory variable become 

significant at the 5% level after adding time fixed effects to individual fixed effects. This indicates that the omitted 
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variables affect the effect of carbon lock-in over time. Therefore, using a two-way fixed effects model in this study is 

necessary so the carbon unlock-in effect of carbon emissions trading can be obtained more accurately. After 

introducing only control variables based on individual fixed effects, we also present a significant negative effect of 

the carbon trading policy on the degree of carbon lock-in at the 5% level; however, FDI is not significant. This 

indicates no significant difference in FDI at the provincial level, whereas the level of regional construction has a 

significant negative effect on degree of carbon lock-in. 

Finally, after adding control variables to the two-way fixed-effects model, the interaction term coefficients of 

the core explanatory variable, which are the most critical concern of this study, are significantly negative at the 1% 

level. This indicates that the implementation of China’s pilot carbon emissions trading’ policy has significantly 

reduced degree of carbon lock-in in the pilot provinces. Regarding control variables, both FDI and RCL have 

significant negative effects on the level of carbon lock-in, with FDI having a more significant effect. This indicates 

that technological innovation is vital in carbon unlocking. 

4.3. Analysis of regional differences in the carbon unlocking effect of carbon emissions trading 

4.3.1. Empirical results of the SCM 

Sample data used in this section are consistent with those in the previous section, with 2007–2019 as the SCM 

study period. The predictor variables were used as control variables for foreign direct investment and regional 

construction levels, as described in the previous section. The remaining 24 non-pilot regions were used as the 

control group to optimally weigh the estimated degree of carbon lock-in for the six pilot regions. Considering that 

carbon trading in the pilot regions of Beijing, Tianjin, Shanghai, and Guangdong officially ran in 2013, and Hubei 

and Chongqing ran formally in 2014, their actual running time was considered as the year of the policy shock in 

SCM. Table 2 presents optimal weighting estimates for the six pilot regions and the root mean square percentage 

error (RMSPE) before policy implementation.  

Table 2. Synthetic Weights and Root Mean Square Percentage Error for Each Pilot.  

Region Weights RMSPE 

Beijing 
Jiangsu Fujian Xinjiang Hainan Shandong 

0.010 
0.507 0.239 0.19 0.048 0.015 

Tianjin 
Fujian Qinghai Liaoning Hainan  

0.012 
0.636 0.22 0.115 0.028  

Shanghai 
Fujian Jiangsu Xinjiang Hainan  

0.002 
0.671 0.231 0.076 0.022  

Hubei 
Xinjiang Shandong Henan Zhejiang Anhui 

0.026 
0.256 0.186 0.139 0.037 0.03 

Guangdong 
Shandong Fujian Hainan Yunnan  

0.074 
0.431 0.408 0.142 0.02  

Chongqing 
Fujian Qinghai Hainan Guangxi Xinjiang 

0.022 
0.4 0.236 0.094 0.049 0.025 

Next, pilot regions were synthesized according to the weight of the control group. Fig. 5 presents the 

comparative trend between the observed carbon lock-in effect values of the six pilot regions and corresponding 

synthetic estimated carbon lock-in effect values of the six pilot regions. Fig. 5 indicates that the synthetic value of 

the carbon lock-in degree for Guangdong before policy intervention in the carbon emissions trading pilot was a  
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Figure 5. Trends in carbon lock-in effect values: pilot provinces (municipalities) vs. synthetic pilot provinces 

(municipalities). 

relatively poor fit for the actual value. However, the RMSPE of 0.074 was within an acceptable range. The synthetic 

curve for the remaining five pilot cities before policy intervention was nearly identical to the actual value, which is 

consistent with the error results in Table 2. From the fitting of the post-policy intervention of the carbon emissions 

trading pilot, the carbon lock-in degree values were lower than the synthetic values in five of the pilot provinces—

Guangdong, Beijing, Chongqing, Hubei, and Shanghai. This indicates that the carbon emissions trading policy has, 

to some extent, contributed to increasing carbon unlocking in these five provinces. Tianjin had a carbon unlocking 

effect at the beginning of the policy implementation phase. However, the policy utility became insignificant, and a 

negative utility emerged in 2016–2018. 

Fig. 6 indicates that Guangdong has had the best carbon unlocking effect since the implementation of the 

carbon emissions trading policy, followed by Beijing, Hubei, Chongqing, and Shanghai with an average carbon 

unlocking effect. By contrast, Tianjin had the least satisfactory carbon unlocking development. According to Wind 

data (https://www.wind.com.cn/), by the end of December 2019, the cumulative turnover of carbon allowances in 

Guangdong Province was 118,982,600 tons. Cumulative turnover was RMB 186.4 million, which ranks first among 

all pilot cities. Cumulative turnover of carbon allowances in Tianjin was 6,541,100 tons, and cumulative turnover 

was RMB 87 million, ranking last among all the pilot cities. 
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Figure 6. Carbon lock-in effect values gap between pilot provinces (municipalities) and synthetic pilot provinces 

(municipalities). 

SCM results are broadly consistent with the carbon quota trading situation, with provinces with more 

transactions having better carbon unlocking effects. 

4.3.2. Robustness tests 

To confirm the validity of the above results and that the estimated policy effects are statistically significantly 

different from zero, a ranking test is recommended (Abadie et al., 2010). This is used to determine whether the 

same situation occurs in other provinces, as in pilot provinces, and with what probability. This method assumes 

that all control group provinces also began implementing carbon trading policies in 2013 or 2014, which constructs 

a synthetic carbon lock-in for the corresponding provinces using SCM and estimating the policy effect in the 

hypothetical case. Then, under hypothetical conditions, the actual policy effects generated in the pilot provinces 

were compared with those generated by control group provinces. If the difference between policy effects is 

sufficiently large, there is reason to believe that the carbon emissions trading policy effect is significant. 

This approach requires a good fit for the degree of synthetic carbon lock-in in each province prior to policy 

implementation. If a province has a poor fit before policy implementation (i.e., relatively large RMSPE value), even 
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a large difference in the predictor variables obtained later in the policy does not reflect the effect of the policy. 

Therefore, in this study, cities with abnormal RMSPE values before policy implementation were excluded, and all 

six pilot regions with the most significant RMSPE values in the control group test were Jiangsu. 

 

Figure 7. The carbon lock-in effect values gaps in pilot provinces (municipalities) and placebo gaps in 23 control 

provinces (municipalities). 

Fig. 7 presents the results of the robustness test. The implementation of the pilot policy in Beijing has reduced 

the degree of carbon lock-in. Excluding Jiangsu, the remaining 23 provinces in the sample present a 4.34% (1/23) 

probability that a significant gap exists in the degree of carbon lock-in between Beijing and the synthetic Beijing 

and the effect of carbon unlocking in Beijing can be considered significant at the 5% level. Similarly, Guangdong had 

a 4.34% (1/23) probability of having a large gap between the extent of carbon locking in Guangdong and synthetic 

Guangdong. The effect of carbon unlocking in Guangdong could be considered significant at the 5% level. 

For Hubei and Chongqing, the dashed lines below the solid red line are only two after the policy occurrence, 

and the calculated probability of the policy effect is attributable to a mistake made by chance being about 8.70% 

(2/23). Therefore, at the 10% significance level, we can assume that the carbon unlocking effect of the pilot carbon 

trading policy in Hubei and Chongqing passes the placebo test. However, the carbon unlocking effect of the carbon 

emissions trading pilot policy does not pass the placebo test, carbon unlocking effect is not significant, and carbon 
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emissions trading policy needs further strengthening. 

5. Discussion and Analysis 

According to the above analysis, a carbon emissions trading policy can significantly mitigate carbon lock-in. 

The following will further explore the mechanisms of the impact (i.e., paths of achieved carbon unlocking). As stated 

in the construction of the carbon lock-in measurement index system in the second part of this study, carbon lock-in 

is formed through four mechanisms: infrastructure, technology, institution, and social behavior. Therefore, the four 

carbon lock formation mechanisms were used as intermediary variables to regress carbon lock-in. Fixed input lock-

in is not significant in the first stage, and Table 3 lists the regression results after excluding it. 

Table 3. Influencing mechanisms of carbon emission trading policy on carbon unlocking. 

Variables Lock Technique Institution Social behavior Lock 

Treat*post 
-0.0438*** -0.0671*** -0.0186** 0.0486*** 0.00629 

(-2.77) (-9.34) (-2.49) (4.61) (1.07) 

Technique 
    1.221*** 
    (29.43) 

Institution 
    1.012*** 
    (27.01) 

Social behavior 
    1.043*** 
    (38.48) 

_cons 
1.913*** 0.647*** 0.805*** 0.0958*** 0.208*** 
(84.17) (62.81) (75.04) (6.33) (5.88) 

N  390 390 390 390 
Province fixed  YES YES YES YES 
Year fixed  YES YES YES YES 
control variables  YES YES YES YES 

Notes: t-statistics in parentheses; *p<0.10, **p<0.05, ***p<0.01. 

 

 

Figure 8. Mechanism analysis framework diagram. 
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Table 4. The effect values of the mediation effect. 

 Coef Proportion of total effect 

Direct effect 0.00629 -0.143607306 

Indirect effect 
Technique effect -0.0820*** 1.872146119 
Institution effect -0.0188** 0.429223744 

Social behavior effect 0.0507*** -1.157534247 
Total effect -0.0438**  

Notes: *p<0.10, **p<0.05, ***p<0.01. 

Table 3 and Fig. 8 indicate that in stage (a), implementing a carbon emissions trading policy significantly 

reduces technical lock-in and institutional lock-in and increases social behavior lock-in. Referring to existing studies, 

both EU experience and Chinese attempts confirm that carbon trading effectively promotes innovative low-carbon 

technologies and carbon reduction (Teixido  et al., 2019; Wang et al., 2021), leading to lower technology lock-in. 

Government intervention is also key in reducing carbon emissions (Lin and Huang, 2022). Moreover, the policy does 

not lead to a shift in household lifestyles toward low carbon and even deepens the lock-in of social behavior, which 

clearly runs counter to our expectations. However, a negative correlation between voluntary action and reduction 

potential has also been confirmed (Dubois et al., 2019). 

In stage (b), technology lock-in, institutional lock-in, and social behavior lock-in significantly increase total 

carbon lock-in effect. As 𝑐′ is not significantly different from 0, the mediating effect of carbon emissions trading 

policy on carbon lock-in is a fully mediated process. Hence, carbon unlocking cannot be performed directly by 

carbon emissions trading policy. Table 4 results show that carbon trading policies play a mediating role in carbon 

unlocking by reducing technology lock-in and institutional lock-in by 187.2% and 42.9%, respectively. However, 

social behavior plays a reverse mediating role of 115.7%. Our results reveal that the transformation of high-carbon 

infrastructure and social behavior requires additional policies to induce unlocking toward low carbon. Particularly, 

the extent to which social behavior influences carbon lock-in should not be underestimated. 

6. Conclusions and Policy Implications 

6.1. Main conclusions 

This study used panel data on 17 indicators from 30 provincial-level administrative regions in China from 2007 

to 2019 as a research sample to measure the carbon lock-in effect based on the RAGA-PP model. Subsequently, DID 

and SCM methods are used to empirically analyze the carbon unlocking effect in the pilot cities of carbon emissions 

trading, leading to the following conclusions:  

(1) The overall carbon lock-in trend in China’s provinces is declining. Significant interprovincial differences 

exist in the degree of carbon lock-in in China’s regions, presenting a development pattern wherein the carbon lock-

in effect is weakest and strongest in the eastern and western provinces, respectively. Level of carbon lock-in 

governance in the eastern provinces has been leading nationwide. Although the central and western provinces have 

reached carbon unlocking milestones, a significant gap remains in the eastern provinces. 

(2) Among the contributions to the level of carbon lock-in, the top four contributors to the level of carbon lock-

in are urban natural gas penetration, state-controlled enterprises level, transaction value in the technical market, 

and carbon emission intensity of fixed assets, and all of which belong to different criterion levels. Among social 

behavior indicators, only urban natural gas penetration indicator contributes snificanthighly to the carbon lock-in 

level. However, reducing the level of residential household energy use is difficult. This shows that, to change the 

status quo of carbon lock-in, we mainly begin from the initial investment construction and technological innovation, 

and state-owned enterprises should initiate carbon unlocking. 
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(3) Implementing carbon emissions trading policies can effectively mitigate the carbon lock-in effect; however, 

the effect gradually weakens as the number of years of policy implementation increases. This phenomenon indicates 

that at the beginning of policy implementation, enterprises in each region, out of long-term cost and remuneration 

considerations, choose to convert to new kinetic energy and replace it with low-carbon infrastructure and other 

carbon unlocking methods to obtain more future profits. Once companies reduce their carbon emissions to within 

carbon allowances, they do not conduct further carbon unlocking.  

(4) Influenced by the carbon emissions trading policy, degree of carbon lock-in in Guangzhou decreases 

significantly, and the robustness test indicates the reliability of the results. Beijing, Hubei, Chongqing, and Shanghai 

also observed reduction in the degree of carbon lock-in after implementing the policy. However, this effect was not 

particularly pronounced. Carbon unlocking effect in Tianjin remains the least desirable. Degree of carbon unlocking 

has a specific relationship with the volume of carbon quota trading. Moreover, provinces with large volumes of 

carbon quota trading have a better carbon unlocking effect. The degree of carbon unlocking may also be closely 

related to policy differences on a legal basis, coverage of industries and enterprises, carbon quota allocation, penalty 

mechanisms, and market regulation mechanisms of carbon trading markets in each province. 

(5) China’s carbon trading policy achieves carbon unlocking by reducing both technology and institutional lock-

in impact mechanisms but plays a negative role in social behavior and has little significance in reducing fixed asset 

lock-in. This may be because carbon trading is a market-based solution for the environment and does not force 

residents to adopt low-carbon behavior while possibly releasing a large amount of consumer demand. In turn, this 

increases the lock-in effect of social behavior. Additionally, the policy has a low stimulus to unlock fixed assets 

because of the high cost of infrastructure and low strength of carbon quotas. Policymakers should additionally adopt 

policies to avoid the continued shift to carbon-intensive lifestyles by households and incentivize businesses to shift 

from high-carbon to low-carbon facilities. 

6.2. Policy Implications 

(1) Strengthen carbon lock-in governance in the western region. China’s western region has the highest 

degree of carbon lock-in, probably because the western region is a significant development and transformation base 

for China’s energy resources. This requires a considerable amount of energy to be sent outwards. Therefore, in the 

carbon unlocking process, the western region can vigorously develop clean energy sources (e.g., wind and solar 

power), gradually replacing high carbon emission production energy equipment and strengthening carbon capture 

and sequestration technologies. 

(2) Increase investment in low-carbon scientific research and build low-carbon infrastructure. The 

government and enterprises should increase the internal expenditure on R&D funds, investment in fixed assets of 

high-tech industries, and expenditure on science and technology in local financial accounts. To help enterprises 

advance the R&D integration process, low-carbon technologies must be cultivated, applied, and promoted and low-

carbon infrastructure, and carbon unlocking should be constructed and realized.  

(3) Promote steady progress in the national carbon emissions trading market. The carbon unlocking effect of 

the carbon emissions trading pilot study was remarkable. Moreover, it has effectively promoted greenhouse gas 

emission reduction by enterprises in pilot provinces and cities and mapped out the system, training talent, 

accumulating experience, and laying the foundation for constructing the national carbon market. On this basis, 

China should actively promote the construction of the national carbon market, build an institutional system to 

support the operation of the national carbon market, and steadily develop an implementation plan for quota 

allocation. 

(4) Promote the combination of carbon emissions trading and PHCER and improve the carbon quota system. 
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Guangdong Province has the best carbon unlocking effect and the largest volume of carbon quota trading among 

pilot carbon emissions trading regions. Carbon emissions trading in this province has two characteristic highlights: 

implementation of a combination of paid and free distribution of quotas and the combination with the PHCER. Other 

provinces can refer to the successful experience of Guangdong Province, and combine their economic development, 

industrial structure, energy consumption, greenhouse gas emissions, and other characteristics to enrich and 

activate carbon quota trading transactions.  
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Figure A1. Operation of carbon emissions trading pilot areas in China. 
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Table A2. Indicator system for evaluating the carbon lock-in effect. 

Goal Layer Criterion Layer Indicator Layer Unit Feature Source 

Integrated 
indicator system 
of carbon lock-in 
assessment 

A. Carbon lock-
in of fixed 
input 

A1. The ratio of Value-added of the 
secondary industry to GDP. 

% Positive 
China Statistical 

Yearbooks 

A2. The ratio of total investment in fixed 
assets in high-tech industries to total 
investment in fixed assets in society. 

% Negative 
China Fixed Assets 

Statistical 
Yearbooks 

A3. Carbon emission intensity of fixed 
assets (the ratio of total CO2 emission 
to total investment in fixed assets in 

society). 

Ton per 10 
000 yuan 

Positive 

CEADs、China 

Fixed Assets 
Statistical 
Yearbooks 

A4. The ratio of depreciation of fixed 
assets to GDP. 

% Positive 
China Statistical 

Yearbooks 

B. Carbon lock-
in of technique 

B1. Energy intensity (the ratio of total 
energy consumption to GDP). 

A ton of 
standard 
coal per 10 
000 yuan 

Positive 
China Statistical 

Yearbooks 

B2. CO2 emission intensity (the ratio of 
total CO2 emission to GDP). 

Ton per 10 
000 yuan 

Positive 

CEADs、China 

Statistical 
Yearbooks 

B3. Internal expenditure on R&D. 10 000 yuan Negative 

China Statistical 
Yearbook on 
Science and 
Technology 

B4. Transaction value in the technical 
market. 

100 million 
yuan 

Negative 
China Statistical 

Yearbooks 

C. Carbon lock-
in of institution 

C1. Scientific expenditures of the local 
financial accounts expenditure. 

100 million 
yuan 

Negative 
China Statistical 

Yearbooks 

C2. The number of professional and 
technical personnel in scientific 

research in state-owned institutions. 
Person Negative 

China Statistical 
Yearbook on 
Science and 
Technology 

C3. The ratio of investment in the 
treatment of environmental pollution to 

GDP. 
% Negative 

China Statistical 
Yearbook on 
Environment 

C4. State-controlled enterprises level 
(The ratio of total assets of state-owned 
industrial enterprises above designated 

size to the total assets of industrial 
enterprises above designated size). 

% Positive 
China Statistical 

Yearbooks 

D. Carbon lock-
in of social 
behavior 

D1. Urbanization level (the ratio of 
urban population to the total 

population) 
% Positive 

China Statistical 
Yearbooks 

D2. Per capita disposable income of 
urban residents. 

Yuan per 
capita 

Positive 
China Statistical 

Yearbooks 

D3. The volume of passenger 
transportation. 

100-million-
person 

kilometers 
Positive 

China Statistical 
Yearbooks 

D4. Urban natural gas penetration. % Negative 
China Statistical 

Yearbooks 

D5. Civilian automobile ownership. 10 000 unit Positive 
China Statistical 

Yearbooks 
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