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ABSTRACT 

This paper presents an operational framework for assessing the trajectories of production, energy, emissions, and 

capital accumulation to ensure the implementation of Nationally Determined Contributions (NDCs). The 

framework combines widely used methodologies (STIRPAT, system dynamics, and optimization) to simulate the 

pathways of variables until a target year. The CO-STIRPAT dynamic system allows us to identify the spillover 

pathways from carbon policy to economic growth based on output optimization principles; to conduct a more 

systematic analysis of the interconnections between the main drivers that determine carbon emissions; to develop 

a cost-effective climate policy mix that is a backbone for the right combination of carbon pricing, energy efficiency, 

and carbon intensity; and to assess NDC targets with respect to ambition gaps, implementation gaps, and 

feasibility. 
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1. Introduction 

Countries have pledged their Nationally Determined Contributions (NDCs) under the Paris Agreement. 

Meeting NDC targets is critical to reducing emissions and limiting global warming through collective action 

around the world. The probability of keeping warming below 2°C under current trends is only 5% but increases to 

26% if all countries meet their NDCs and continue to reduce emissions at the same rate after 2030 (Liu and 

Raftery 2021). However, their fully statistically based probability framework shows that the probability of 

meeting NDCs for the largest emitters is low. If countries fail to meet their NDCs, the credibility of the global 

agreement to combat climate change could be undermined, making it urgent to explore feasible climate policy 

options. 

Countries may consider a variety of policy instruments to fulfill their NDCs: carbon pricing, improving energy 

efficiency, reducing carbon intensity, etc. First, introducing a carbon pricing mechanism (such as a carbon tax or 

cap-and-trade system) can create economic incentives to reduce emissions. Establishing mechanisms for green 

finance and investment in sustainable projects can accelerate the transition to a low-carbon economy. Another 

policy option is to encourage energy efficiency in industrial processes, transportation, buildings, and appliances to 

significantly reduce emissions. Promoting circular economy principles (such as recycling and waste reduction) 

can contribute to energy efficiency by reducing resource consumption. As a next option, governments can provide 

incentives, subsidies, and tax breaks to attract investment in renewable energy infrastructure and technologies. 

Funding R&D for low-carbon technologies and innovations can catalyze progress toward meeting NDC targets 

more effectively. 

This paper aims to provide a practical operational framework for assessing the feasibility of individual 

climate policy options and deriving the optimal combination of instruments to achieve NDC goals. NDCs may be 

incompatible with current climate policy instruments, resulting in an ambition gap and an implementation gap. 

The ambition gap relates to the difference between the carbon budget implied by the 1.5° or 2.0°C corridor set by 

the Paris Agreement and the level of NDCs committed by countries (Friedlingstein et al. 2022). Assessing the 

ambition of NDCs is particularly important because the Paris Agreement calls for regular reviews of national 

contributions (Höhne et al. 2018). The implementation gap captures the difference between the policies 

implemented and the emission reduction pathway targeted in the NDC (Perino et al. 2022). The level of ambition 

gap and implementation gap varies widely across countries, and some countries appear to have set unrealistic 

NDC targets. Countries that set overly ambitious targets may face greater challenges in achieving them, increasing 

the likelihood of NDC failure. An accurate assessment of the feasibility of announced NDC targets depends on the 

flexibility of the operational framework to reflect progress in energy efficiency and carbon intensity reduction in 

an appropriate way. We combine CO-STIRPAT (Component-Oriented STIRPAT) with system dynamics and 

optimization methodologies to link NDC targets to manageable quantified performance indicators. We aim to keep 

the framework as simple as possible by focusing on the essentials but with enough flexibility to ensure that 

important issues relevant to climate policy are covered in the framework. 

Assessing the feasibility of NDC targets can provide valuable insights into the effectiveness of current climate 

policy actions to reduce carbon emissions. By analyzing the likelihood of achieving NDC targets, policymakers can 

identify areas where more effort and resources are needed to increase the probability of success. The operational 

framework in this paper can guide policymakers to implement climate policy measures more effectively. By 

translating the gap between the pathway predicted by current climate technologies and the NDC target pathway 

into the necessary level of policy indicators (carbon price, clean energy share, energy efficiency, carbon intensity), 

the framework can help the general public assess whether the targets are feasible under current conditions and 

whether they are ambitious enough to achieve the goals of the Paris Agreement. This research can also contribute 
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to broader solutions for international cooperation to achieve global climate goals. By analyzing the likelihood of 

achieving NDC targets in different countries and regions, researchers can identify challenges and opportunities for 

more effective global cooperation to address the climate crisis. 

The paper proceeds as follows. We first review the related literature and introduce the analytical backbone. 

Next, we describe the design for the numerical analysis and present the data. We then present the quantitative 

results of applying the framework to the Korean NDC targets. Finally, we conclude the paper with conclusions and 

future research directions. 

2. Literature review 

This research is deeply related to four research streams: NDC goal attainability, drivers of carbon emissions, 

the nexus between GDP, energy, and emissions, and system dynamics. In this section, we briefly introduce key 

findings related to each research stream that is relevant to this paper. First, several studies have assessed if 

countries are on track to fulfill their NDCs as promised in the Paris Agreement. As presented in Panel A of Table 1, 

the current policies across scenarios are evaluated to analyze whether countries are on track to meet their NDC 

targets. Next, many studies have used the IPAT, the ImPACT (as a widely recognized instance, the Kaya identity), 

and the STIRPAT framework for analyzing the key drivers of carbon emissions. As presented in Panel C of Table 1, 

many papers analyze individual factors of the Kaya identity to identify relevant drivers of carbon emissions. Next, 

there is a large amount of research on issues related to the nexus of GDP, energy, emission, NDC, and climate policy. 

As shown in Panel C of Table 1, several studies have analyzed the causal links between GDP, energy consumption, 

and carbon emissions with objectives close to ours. Most previous studies focus on whether GDP or energy 

consumption affects carbon emissions. In contrast, our study seeks to determine how carbon emission reductions 

through NDCs affect GDP or energy consumption. Finally, much of the recent work on climate policy has utilized 

system dynamics, as summarized in Panel D of Table 1. They develop simulation models based on system 

dynamics to examine the impact of the adoption of climate policy instruments.  

3. Methods 

3.1. IPAT, ImPACT, STIRPAT, and CO-STIRPAT 

The theoretical basis of this paper is a commonly used framework in the field of sustainability studies to 

understand the drivers and impacts of economic activities on carbon emission: IPAT, ImPACT, and STIRPAT. These 

theoretical concepts are often used as a starting point to understand the complex interactions between human 

activities and the environment. As discussed in early papers(Commoner 1971; Ehrlich and Holdren 1972), IPAT 

(Impact, Population, Affluence, and Technology) is a simple equation that expresses the environmental impact (I) 

as the product of population (P), affluence (A), and technology (T). IPAT emphasizes the role of population growth, 

increasing affluence patterns, and technological advancements in shaping environmental degradation. As an 

extended IPAT framework reconceptualized by (Waggoner and Ausubel 2002), ImPACT (Integrated Model of 

Population, Affluence, Consumption, and Technology) includes an additional factor: consumption (C). ImPACT 

focuses on the interconnections between population dynamics, economic development, consumption patterns, 

technological choices, and their combined impacts on the environment. As a statistical version of IPAT 

reconstructed from related research(Dietz and Rosa 1994; Rosa and Dietz 1998), STIRPAT (Stochastic Impacts by 

Regression on Population, Affluence, and Technology) seeks to explain environmental impacts by using regression 

analysis to estimate the influence of PAT (population, affluence, technology) on environmental outcomes. 

CO-STIRPAT is a component-oriented version of STIRPAT described in Jin (2023) that incorporates a stochastic 
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term  in the dynamic causal relationship for each component of ImPACT (or the Kaya identity). These four 

approaches share a common focus on understanding the relationship between human activities and 

environmental impacts although they differ in terms of their complexity and the variables they consider.  

Table 1. Relevant research examples and key findings. 

Feasibility of committed NDCs 
Paper Finding 
den Elzen et al. (2019) Some of the G20 economies are on track to meet their NDCs. 
Dong et al. (2018) There will be a shortfall in achieving targets by seven countries out of the top ten CO2 

emitters. 
Liobikienė and Butkus (2017) The EU countries should attempt more to reduce energy consumption and to increase the 

share of RES to seek targets. 
Liu and Raftery (2021) The probabilities of meeting their nationally determined contributions for the largest 

emitters are low. 
Roelfsema et al. (2020) The countries evaluated are found to not achieve their pledged contributions with 

implemented policies (implementation gap). 
Drivers of carbon emissions 

Paper Finding 
Ang and Zhang (2000) The Kaya identity helps quantitatively analyze the impact of interest on the intensity or total 

amount of carbon emissions. 
Hwang et al. (2020) The indirect effects of the decomposed variables in the Kaya identity on the carbon emission 

are significant. 
Jin and Kim (2017) It is necessary to have sufficient public finances to implement measures contained within 

NDC. 
Wang et al. (2021) From the STIRPAT perspective, the robust U-shaped EKC was confirmed for 198 countries 

between 1990 and 2018. 
York, Rosa, and Dietz (2003) The STIRPAT allows for a more precise specification of the sensitivity of environmental 

impacts to the forces driving them. 
Nexus between GDP, energy, and emission 

Paper Analysis 
Gyimah et al. (2023) Renewable energy and fossil fuel cause carbon emissions in Ghana whereas economic growth 

has no relevant effect on carbon emissions. 
Khan et al. (2022) The causality between GDP growth and carbon emission and the bidirectional causality 

between economic growth and energy use are identified. 
Raihan et al. (2022) Renewable energy use and technological innovation can reduce Malaysia’s carbon emissions 

while economic growth deteriorates the environmental quality. 
Sohag, Chukavina, and Samargandi 
(2021) 

The use of renewable energy in the production process spurs TFP in the long run through 
different macroeconomic channels. 

Wen et al. (2021) The EKC hypothesis is confirmed in the South Asian region; at the early stages of 
development, environmental pollution also increases when economic growth increases. 

System dynamics for climate policy 
Paper Analysis 
Ahmad et al. (2015) Constructed a system dynamics model that investigates the role of feed-in tariff policy in 

Malaysia till 2050. 
Al-Refaie and Abdelrahim (2021) Developed a system dynamics model to analyze the effect of green transportation and 

logistics on the total transportation cost. 
Daneshgar and Zahedi (2022) Developed a dynamic production profitability model to analyze the operation of a hydro 

reservoir system in Iran. 
Nair et al. (2021) Examined the impact of renewable energy in the energy mix for energy supply in Malaysia 

using a system dynamics approach. 
Smit, Musango, and Brent (2019) Investigated issues about energy fuel choice, energy bias, energy switching, and energy 

access through system dynamics. 

Notes: This table provides an overview of papers in four research streams that are closely related to our analysis: feasibility 
of committed NDCs, drivers of carbon emissions, nexus between GDP, energy, and emissions, and system dynamics for 
climate policy. The panel for each research stream lists the author names, year of publication, and key findings of relevant 
papers. 

3.2. System dynamics 

We utilize system dynamics to simulate the behavior of complex CO-STIRPAT systems over time.1 At its core, 

 
1System dynamics was established in the 1950s and has since been widely used in various disciplines, including 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/environmental-kuznets-curve
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/environmental-pollution
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we seek to analyze the interconnections and feedback loops within a system to gain insights into its dynamic 

behavior: production, energy consumption, carbon emission, and capital evolution. The representative agent is 

assumed to have the goal of maximizing profits through a process of optimizing outputs and inputs to achieve the 

highest possible profit level. In a competitive market with prices given, the agent seeks to choose an optimal level 

of production at which marginal revenue equals marginal cost. In our model, climate policy options (carbon 

pricing, energy efficiency enhancement, and carbon intensity reduction) are interconnected within the context of 

NDCs, especially through the profit maximization principle. As shown below, our dynamic system consists of five 

elements of the system: an objective function (profit) and causal relationship constraints (production Q, labor L, 

capital K, carbon-intensive energy EC, carbon-free energy EF, and emission C). For a given set of prices 

{𝑟𝑄 , 𝑟𝐿, 𝑟𝐾, 𝑟𝐸𝐶 , 𝑟𝐸𝐹 , 𝑟𝐶}, each component describes the key aspects that determine the dynamics of the national 

economy.2 

𝑚𝑎𝑥
𝑄

(𝑟𝑄𝑄𝑡 − 𝑟𝐿𝐿𝑡 − 𝑟𝐾𝐾𝑡−1 − 𝑟𝐸𝐶𝐸𝐶𝑡 − 𝑟𝐸𝑅𝐸𝐹𝑡 − 𝑟𝐶𝐶𝑡) (1 − 1) 

𝑄𝑡 = 𝑓(𝐾𝑡−1, 𝐿𝑡) (1 − 2) 

𝐸𝑡 = 𝐸𝐶𝑡 + 𝐸𝐹𝑡 = 𝑔(𝑄𝑡; 𝑡) (1 − 3) 

𝐶𝑡 = ℎ(𝐸𝐶𝑡; 𝑡) = ℎ(𝜔𝑡𝐸𝑡; 𝑡) (1 − 4) 

Where: 𝜔𝑡 = 𝐸𝐶𝑡 𝐸𝑡⁄ . 

𝐾𝑡 − 𝐾𝑡−1 = 𝑖(𝑄𝑡; 𝑡) (1 − 5) 

First, the profit function (Equation 1-1) includes terms related to energy consumption and carbon emissions, 

unlike traditional cost structures that focus only on capital and labor inputs. The relationship between revenue, 

production costs, energy price, and carbon price is now integrated into a unified decision problem. This describes 

the economic incentive to consider additional constraints such as energy efficiency and carbon intensity. The 

framework allows the previously externalized cost of carbon emissions to be internalized through carbon pricing.3 

The second element of our system dynamic model (Equation 1-2) is the production function with two 

conventional inputs: capital and labor. We use the constant elasticity of substitution (CES) production function to 

describe the relationship between two inputs and the output in a production process.4 The CES production 

function provides a flexible framework for analyzing production processes, input substitution possibilities, and 

the impact of changes in factor prices on output levels. 

Other elements of our dynamic system seek to gain insight into dynamic behavior by analyzing causal 

relationships within the system. The next two elements of the model (Equations 1-3 and 1-4) describe each of the 

causal relationships for energy efficiency and carbon intensity. They are major constraints in the decision-making 

process for transitioning to a low-carbon economy. Note that production activities first cause total energy use in 

Equation 1-3, and then only carbon-intensive energy consumption entails carbon emissions in Equation 1-4. 

The final element of the model (Equation 1-5), the capital evolution function, shows the stocks and flows of 

 
engineering, economics, management, and social sciences (Forrester 1971). 
2The parametric specification and relevant assumptions used in the mathematical analysis are presented in 
Appendix I. 
3This internalizationcan be achieved in a carbon tax and/or cap-and-trade system.A discussion of how to 
accomplish this is beyond the scope of this paper's analysis and is left as a future research question. 
4The two factor (capital, labor) CES production function was initially introduced by Solow (1956) and made 
popular by Arrow et al. (1961). 
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the dynamic system. The capital stock is related to both investment (inflows into the capital stock) and 

depreciation (outflows from the capital stock). The capital evolution function is also characterized by time delays 

in our dynamic system because it takes into account the time difference between when capital is accumulated and 

when it is used in production. These components also constitute a feedback loop, an interaction mechanism that 

affects the behavior of the dynamic system.5In this way, our dynamic system contains non-linear relationships 

where changes in one component do not affect other components proportionally. 

Overall, these functions identify interconnections and feedback between different components of the system. 

The predicted behavior of the system under different scenarios depends on the causal relationships between 

these components (production, energy, emissions, and capital change). Thus, our dynamic system can be used as a 

powerful toolset for understanding, simulating, and managing the complex interactions between production, 

energy use, carbon emissions, and capital accumulation. This can contribute to more effective decision-making 

and climate policy design to fulfill NDCs. 

3.3. Optimization 

As stated earlier, the purpose of this paper is to identify the relationship between production, labor, capital, 

energy, and carbon emissions under standard profit maximization principles and to examine the implications for 

climate policy. To do this, the dynamic system presented in Equations 1-1 through 1-5 can be rephrased as the 

following: 

𝑅𝑒𝑣𝑒(𝑄𝑡) = 𝑟𝑄𝑄𝑡 (2 − 1) 

𝐶𝑜𝑠𝑡(𝑄𝑡) = 𝑟𝐿�̂�(𝑄𝑡) + 𝑟𝐾𝐾(𝑄𝑡) + 𝑟𝐸  𝑔(𝑄𝑡) + 𝑟𝐶  ℎ(𝜔𝑡 𝑔(𝑄𝑡)) (2 − 2) 

𝑀𝑅(𝑄𝑡
∗) = 𝑀𝐶(𝑄𝑡

∗) (2 − 3) 

where Qt
∗represents the optimal production level that satisfies the first-order condition in Equation 2-3. 

Equation 2-1 is a simple revenue function in linear form: quantity produced multiplied by price. Equation 2-2 

shows a cost function with four terms for the relevant factors (labor, capital, energy, and emissions), each of which 

is a nonlinear function of output Q. The first two terms, L̂(Qt) for labor and K̂(Qt) for capital, represents the 

demand for production factors to produce an output Qtat a level that minimizes the cost of production, given a 

CES production function and a set of prices.6 In the third term, g(Qt) shows how the energy demand for a given 

output Q is determined. In the last term, h(ωt g(Qt)) is a composite function that shows a continuous causal 

interconnection from output to energy and from energy to emissions. Equation 2-3 is the conventional first-order 

condition in which profit is maximized. Marginal revenue on the left-hand side is equal to the product price. In 

contrast, marginal cost on the right-hand side consists of the first-order derivatives of the four nonlinear functions 

in Equation 2-2.  

Because the complex nonlinear relationships make it difficult to derive an analytical solution, we use 

numerical analysis to explore optimal production levels. This numerical analysis is performed in four steps, as 

follows.  

 
5As explained in Sterman (2001), a positive feedback loop amplifies the initial change and leads to exponential 
growth or decline in the system, whereas a negative feedback loop stabilizes the system, preventing it from going 
to extremes and maintaining equilibrium.Delays in feedback loops can lead to oscillations or even instability in the 
system. 
6For the numerical simulations, we use the demand for production factors derived analytically from cost 
minimization, the results of which are presented in Appendix I. 
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 Step 1: The functions given in Equations 1-2 to 1-5 are estimated from observations on GDP, labor, capital, 

energy and emissions, and capital during the estimation period. 

 Step 2: Assuming production took place under the optimization conditions given in Equation 2-3, we 

estimate prices using observations on the other variables and the functions estimated in Step 1. To estimate 

the set of prices (carbon, carbon-intensive energy, carbon-free energy, capital, labor, and output), we apply 

the assumption that profits were higher than zero during the estimation period (2000-2022). 

 Step 3: Assuming that the parameters and prices estimated in Steps 1-2 remain the same throughout the 

forecast period, we find the optimal production level that satisfies Equation 2-3 for each year of the forecast 

period. Optimal output at each point in time cannot exceed the supply of production factors that exist then, 

with the working-age population acting as an upper bound on labor supply and the amount of capital 

accumulated up to that point as an upper bound on capital supply. 

 Step 4: Once the optimal production is determined, the parameters estimated in Step 1 are used to determine 

the corresponding energy, emissions, and capital changes according to Equations 1-3 to 1-5. 

 Step 5: The previous Steps 3-4, are repeated for each year of the forecasting period. The result is an optimal 

growth pathway to 2030, the NDC target year. 

3.4. Scenarios 

We use scenarios to place our analysis in the context of system dynamics to predict the interactions of various 

components. In our analysis, the baseline scenario is the pathway before the introduction of a carbon price, i.e., 

when carbon emissions are free of charge. In the baseline scenario (sc_ba), we compare carbon emissions 

projections with the NDC pathway. Because the feasibility of achieving NDC goals depends on technological 

progress, the results of the baseline scenario can provide clues to the interesting question of whether NDC goals 

are compatible with existing technology. 

We explore an alternative scenario involving the energy mix between carbon-intensive energy and 

carbon-free energy. In the dynamic system, we assume a rippling path where production activities first cause total 

energy use in Equation 1-3, and then only carbon-intensive energy consumption entails carbon emissions in 

Equation 1-4. Therefore, for a given level of output, an increase in the share of carbon-free energy reduces carbon 

emissions even when the amount of energy required to produce that output is constant, that is when energy 

efficiency is constant. However, in situations where the price of carbon-free energy is higher than the price of 

carbon-intensive energy, the cost increases more. This scenario (sc_en) assumes a gradual increase in the share of 

carbon-free energy each year as climate policy progresses towards meeting the 2030 NDC target. 

In the second alternative scenario, which introduces a carbon price, the cost of carbon emissions becomes to 

affect profits. In the scenario (sc_pr), climate policy aims to reduce carbon emissions, specifically through a carbon 

price that puts a price on carbon emissions to reflect the social cost of carbon. A carbon price sends market signals 

to market participants to encourage a shift to low-carbon goods and services.7 In this scenario, the carbon price is 

assumed to increase gradually each year towards meeting the 2030 NDC target. 

The dynamic model allows us to quantify the changes in the energy mix and carbon price needed to achieve 

the NDC targets. As a practical application of this framework, we adopt the NDC target pathway recently 

announced by the South Korean government. The target pathway is compared to the predicted pathway derived 

from the dynamic system. Once the gap between the two pathways is identified, we search for the required level of 

carbon-free energy and carbon price. 

 
7Consumers may prefer products with a lower carbon footprint, and businesses that offer these products may gain 
a competitive advantage. Keep in mind that the extent to which carbon pricing affects profit maximization will 
depend on the stringency of the carbon pricing policy, the energy efficiency of the industry, and the availability of 
low-carbon alternatives. 
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4. Results 

The numerical analysis involves the following steps: estimating causal parameters between components; 

estimating the implied price set; exploring optimal production levels based on the estimated parameters; 

calculating a baseline scenario for production, energy, and emissions; and solving for the share of carbon-free 

energy and carbon price needed to meet NDC targets. 

Our dataset comprises population, GDP, energy, emission, capital stock, labor, and population. We obtained 

their annual data for 23 years(2000-2022)from the ECOS system of the Bank of Korea and the KOSIS system of 

Statistics Korea. For population, we use the long-term projections published in the KOSIS system. 

4.1. Estimated causal relationships 

Figure 1 shows the observed and fitted values for each component in equations 1-2 to 1-5: GDP, energy, 

emissions, and capital change. The trajectories of the three-dimensional graph are determined by the coefficients 

of the nonlinear regression, and the fitted trajectories indicate the causal relationship between the input and 

output components. These fitted trajectories are considered to be the expected paths of the components in the 

coming years until 2030, the target year of the NDC. 

 

Figure 1. Observed and forecasted values. 

Notes: The figure connects the observed and forecast paths for each component in Equations 1-2 through 1-5: GDP, energy, 
emissions, and capital change. The red dot at the end of the red stem represents the observed path over the 23-year 
estimation period (2000-2022). The blue dots at the end of the blue stem represent the predicted path for each causal 
factor over the 8-year projection period (2023-2030). The x- and y-axes on the bottom represent the input factors 
associated with each function, and the vertical z-axis represents the corresponding output factors. Values on all axes are 
standardized to 2018 values, so a value of 1 for each variable means that the variable is at its 2018 level. 

The trajectory of GDP, shown in F.1-A, has been a steady increase from a low level, with recent growth slowing 

as the impact of capital growth has been offset by the impact of a decline in labor. F.1-B shows an energy trajectory 

that continues to increase over time due to the impact of GDP growth, but we can see that the growth rate slows as 
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we approach 2030. The emissions trajectory in F.1-C shows that South Korea's emissions peaked in 2018 and have 

been declining since then. The decline in emissions even as GDP and energy have increased suggests that 

decoupling has occurred. In contrast, the trajectory of capital change in F.1-D shows a steady decline over time, 

approaching low levels in recent years. The lower rate of capital growth, while GDP continues to grow, can be 

interpreted as a sign of weakening expectations for future growth. 

4.2. Implied prices, revenue, and cost 

Once we have estimated the parameters in Equations 1-2 through 1-5, we estimate the prices needed to 

utilize Equation 2-3. Since we are dealing with optimal choices at the country level, it is difficult to directly 

observe such information in practice. To bypass this difficulty, we assume that the output level is held at its 

optimal level. We then estimate the set of prices under the condition that Equation 2-3 is satisfied during the 

estimation period. Since our interest is in the set of relative prices, we normalize the price set so that the output 

price is equal to one. In addition, the carbon price is set to zero because a carbon tax has not yet been imposed 

and emission allowances are currently being allocated for free. Other prices were adjusted appropriately to ensure 

that revenues were not negative for the estimation period. F.2-A shows the estimated prices using data from South 

Korea over the last 23 years (2000-2022). Carbon-intensive energy had the lowest estimated price, followed by 

carbon-free energy, capital, and labor. 

F.2-B shows the shape of the revenue and cost functions. The revenue function in Equation 2-1, which 

consists of the product of the output level and the output price, has a linear form concerning the output level. In 

contrast, the cost function concerning the output level in Equation 2-2 is a nonlinear curve and consists of four 

terms: labor cost, capital cost, energy cost, and carbon cost. The specific shape of the cost function (convexity and 

curvature) is determined by the parameter values in Equations 1-2 through 1-5 estimated in Step 1. With 

parameter estimates using data from South Korea over the last 23 years (2000 to 2022), the cost function is 

convex concerning output. Under these conditions, revenue increases linearly with the level of output, while the 

total cost of production (the sum of labor, capital, energy, and carbon costs) increases nonlinearly. As a result, 

F.2-B shows that the revenue function and the cost function intersect in 2022. It can be interpreted that the 

observed production in South Korea in 2022 is near the optimal level.  

 

F.2-A. Implied relative price. 

Notes: This figure shows the implied relative prices estimated using 23 years of observations over the estimation period 
(2000 to 2022). The relative prices are estimated using the observations and corresponding parameter estimates 
contained in Equations 1-2 through 1-5. The implied prices are estimated under the constraint that production levels 
during the estimation period have satisfied the profit optimization conditions in Equations 2-1 through 2-3. To normalize 
the relative prices, the production price is set to 1 and the carbon price to 0. 
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F.2-B. Revenue and cost function w.r.t. production level. 

Notes: This figure shows the revenue and total cost curves for different levels of production. It uses the parameter estimates 
for Equations 1-2 through 1-5 estimated in Step 1, implied relative prices estimated in Step 2, and production levels set in 
the range 0.5 to 1.5. 

Figure 2. Implied prices, revenue, and cost. 

4.3. Required changes in energy mix and carbon price 

We conduct scenario analysis to investigate the size of changes in the energy mix and carbon price required 

to meet NDC goals. To do this, we set up a comparison scenario where the initial conditions in 2022 are the same 

as in the baseline scenario, but the energy mix or carbon price gradually increases through 2030, and perform 

dynamic system analysis. In a system dynamics framework, as a factor changes, other factors also change and take 

different paths over the next eight years, depending on the estimated interconnections between the components 

specified in Equations 1-2 through 1-5, and on estimated relative prices. 

F.3-A shows the assumptions for the proportion of carbon-free energy used in the alternative scenario. This 

scenario assumes a pathway that starts at the level observed in 2022 and increases linearly at the same rate each 

year until it reaches the level needed to meet the NDC target (40% emissions reduction from the 2018 peak) in 

2030. F.3-B compares the pathways obtained in the alternative scenario to those in the baseline scenario. In the 

alternative scenario, we see that GDP and energy converge to lower levels in 2030 as emissions reach the NDC 

target. The relative pricing scheme estimated in Step 2 shows that the price of carbon-free energy is higher than 

the price of direct carbon energy. Assuming that this price regime remains unchanged over the projection period, 

the production level that satisfies the optimization conditions presented in Equation 2-3 is lower than in the 

reference case. Furthermore, assuming that the parameter estimates of Equation 1-4 estimated in Step 1 remain 

unchanged, the energy level is also lower. As a result, the production and energy levels are progressively lower as 

the share of carbon-free energy in the alternative scenarios gradually increases. 

F.3-C shows the assumptions about carbon prices used in the alternative scenarios. The carbon price is 

assumed to be zero in 2022 and to rise linearly at the same rate each year to a level that corresponds to achieving 

the NDC target in 2030. F.3-D shows that both GDP and energy will be lower in 2030 than those in the baseline 

scenario as the carbon price gradually increases. Referring to the cost function in Equation 2-2 and the curve 

shown in F.2-B, the optimal level of production is lower because the cost curve shifts upward as the carbon price 
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increases, holding other conditions constant. If the link between production and energy identified in Equation 1-4 

remains unchanged over the forecast period, the energy level will also be lower.  

It is worth noting that the response of production and energy in the carbon price adjustment scenario is 

relatively large compared to the results in the energy mix adjustment scenario. These results are based on the 

2022 observations, the estimates of the estimated linkages between the components presented in Equations 1-2 

through 1-5, and the estimates of relative prices. 

 

Figure 3. Scenario comparison. 

Notes: Figures F.3-A and F.3-C show the assumptions of the alternative scenarios for achieving the 2030 NDC target. Over 
the eight-year forecast period (2023-2030), the share of clean energy continues to increase linearly in F.3-A, while the price 
of carbon continues to rise linearly in F.3-C. Figures F.3-B and F.3-D compare the forecast paths under the baseline and 
alternative scenarios. The blue dot at the end of the blue stem represents the path under the baseline scenario and the red 
dot at the end of the red stem represents the path under the alternative scenario. The x- and y-axes at the bottom represent 
GDP and energy, and the z-axis represents emissions. The values on all axes are standardized to 2018 values, so a value of 1 
for each variable means that the variable is at its 2018 level. 

5. Discussion 

5.1. Feasibility of NDC 

The emission pathway in the baseline scenario presented in F.1-C shows that the Republic of Korea faces a 

significant risk of being short of the NDC target. This finding is consistent with previous studies. Using the 

methods of trend extrapolation and back propagation neural networks, Dong et al. (2018) show that there will be 
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a shortfall in achieving targets in South Korea. According to the evaluation results on whether G20 members are 

on track to meet their NDCs, the Republic of Korea’s policy trajectory based on the information available until 

2018 is more than 15% above the unconditional NDC target (den Elzen et al., 2019).8 

Assessing the feasibility of NDC targets should be read with caution, as noted by den Elzen et al. (2019). First, 

it does not necessarily imply that countries that are not yet on track to meet their NDCs are taking fewer 

mitigation actions than countries that are currently on track. First and foremost, NDCs are inherently 

heterogeneous because they are determined on a country-by-country basis. In addition, the level of ambition, 

along with the strength of current policies, affects the level of effort to fulfill NDCs. Our model is flexible enough 

that it can be modified to incorporate relevant factors to directly assess ambition levels. 

Second, the projected pathways are subject to a range of uncertainties related to the interconnected 

causalities in equations 1-2 through 1-5, the implied prices used in equations 2-1 through 2-2, and policy impacts 

that could cause changes in the estimated parameters over the forecast period. There are also uncertainties about 

the implementation gap associated with the policy scenarios used. Furthermore, because South Korea has recently 

made higher-level commitments than it has achieved, it will take several years to close the gap by strengthening 

the implementation of redesigned policies. 

Our framework would contribute to transforming from a symbolic act of environmental activism to a 

practical means of changing climate policy. After the 2015 Paris accord, almost 200 countries submitted their NDC 

targets, some aiming to reach net zero by 2050. However, there are growing cases that achieving the goal may 

require immense effort. For example, a McKinsey report estimates the cost of achieving carbon neutrality for 

governments around the world over the next 30 years at $275 trillion.9 An article in the Financial Times, the 

unexpectedly high cost of achieving carbon neutrality has politicians around the world scrambling to win over 

voters.[3] For instance, the Swedish government has acknowledged the difficulty of achieving carbon neutrality on 

time, saying that it would miss its 2030 interim goal, as well as its 2045 target.10 In Germany, the fragile 

governing coalition is almost broken by proposals to ban domestic boilers run on oil and gas. EU center-right 

politicians point to the bureaucratic burden of the Green Deal climate law ahead of the 2024 European Parliament 

elections. In the US, there is controversy over a $369 billion green subsidy through the Inflation Reduction Act 

(IRA). So far, IRAs have relied on providing subsidies and rebates instead of imposing direct costs on voters. 

Judgments about the cost of fulfilling NDC targets can vary depending on perceptions of economic conditions, and 

there is considerable disagreement among stakeholders. These differences of opinion can lead to climate litigation. 

According to a report of the Grantham Institute for Climate Change and the Environment, 190 lawsuits were filed 

globally in the past year (June 2022-May 2013).11 If the climate agenda continues to be politically polarized, the 

social costs of transitioning to a low-carbon economy could increase further. In these situations, our approach can 

contribute to more efficient consensus building among disagreeing stakeholders by providing science-based, 

value-neutral information. 

 
8The results of the analysis predicted that South Korea's carbon emissions will continue to increase until 2030. 
However, using the 2021 revised NDC and the latest information on energy policy after 2022, our analysis shows 
that South Korea's carbon emissions are expected to follow a steadily declining path through 2030, with a slightly 
faster rate of decline. 
9 The net-zero transition: What it would cost, what it could bring, 
https://www.mckinsey.com/capabilities/sustainability/our-insights/the-net-zero-transition-what-it-would-cost-
what-it-could-bring 
10 How net zero became an election issue around the globe, 
https://www.ft.com/content/f6667506-d38f-43c2-8e75-b39c72112a41 
11 Global trends in climate change litigation: 2022 snapshot, 
https://www.lse.ac.uk/granthaminstitute/publication/global-trends-in-climate-change-litigation-2022/ 
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5.2. Marginal contribution of the framework 

The marginal contribution of our framework can be summarised in a few aspects. Most importantly, while 

previous studies have mainly analyzed the impact of economic growth or energy consumption on carbon 

emissions, our study focuses on the impact that emission reduction policies represented by NDCs can have on 

economic growth and energy consumption. Our approach allows us to analyze the bidirectional causality between 

the two, rather than the unidirectional causality from economic growth to carbon emissions. In particular, the 

identification of spill-over pathways from carbon policy to economic growth based on output optimization 

principles is a novel attempt that has not been explicitly addressed in other approaches. 

Next, our methodology allows for a more systematic analysis of the interconnections between the main 

factors that determine carbon emissions. Conventional methodologies (IPAT, ImPACT, and STIRPAT) assume that 

the main determinants move independently of each other. CO-STIRPAT attempts to account for interconnections 

between determinants but has the limitation of not including direct interconnections between determinants 

beyond the correlations between estimated residuals. In contrast, our approach (CO-STIRPAT system dynamics) 

has the flexibility to include non-linear causal relationships between key drivers in the analysis. 

Next, our framework can be used to develop a cost-effective climate policy mix that is a backbone for the right 

combination of carbon pricing, energy efficiency, and carbon intensity. In the long term, climate policy is mutually 

influential with climate technology regarding carbon intensity and energy efficiency. Given this dynamic 

interconnectedness, it is important to identify the policy priorities that control the direction of technology 

development and adoption. For instance, Jin (2023) points out the short-term inverse correlation between energy 

efficiency and carbon intensity, two proxy indicators of climate technology. Although not fully explored in this 

study, the scale of climate finance can unlock synergies between energy efficiency and carbon intensity. It is 

helpful to scale up private climate finance as large as possible. ESG investments can naturally flow into climate 

finance because systemic ESG risks encompass climate risks.12 Our framework may policymakers to modify the 

climate policy mix as our scientific understanding of the relative costs of energy efficiency and carbon intensity 

evolves. 

Next, our approach can provide a practical tool to assess NDC targets with respect to ambition gaps, 

implementation gaps, and feasibility. Baseline results, such as those shown in Figure 1, can help countries assess 

how ambitious their targets are by examining whether they are in line with their economic circumstances. Overly 

ambitious targets may be set based on strategic or opportunistic motives.13 Access to transparent tools that 

objectively disclose progress toward achieving NDC targets can encourage countries to close implementation gaps. 

Our framework, along with a robust reporting and monitoring system, can help countries update their NDC 

targets at a more feasible level. 

Finally, this approach allows us to evaluate the effectiveness of climate policies by explicitly quantifying how 

much change is needed in the clean energy mix and carbon price given economic conditions. Scenario 

comparisons, such as Figure 3, show how much effort is needed to achieve NDC goals through different climate 

policies. Modifying the alternative scenarios reveals the effect of each measure, such as energy efficiency and 

carbon intensity, as shown in Figure 4. In this way, policymakers can be informed about the effectiveness of new 

climate policies by investigating how aggressively they can be modified to increase the likelihood of meeting NDC 

 

12 For the detailed discussion on systematic ESG risk, strategic screening strategy, how it is related to passive 
investing, and extended criteria for optimal portfolio, please refer to Jin (2018, 2022a, 2022b, 2022c) and Kim, 
Son, and Jin (2022). 
13In this sense, a high probability of failing the NDC target may indicate that a form of green washing has 
occurred.If this is the case, efforts to increase accountability and transparency will be needed to curb the 
occurrence of green washing. 
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targets. The numerical evidence from the South Korean data emphasizes that an optimal mix of policies is 

essential to achieve the 2030 NDC target without burdening economic growth. In this respect, our numerical 

analysis tools can help policymakers design a more cost-effective and inclusive policy mix. 

6. Conclusion and Policy Implications 

This paper proposes an operational framework that emphasizes the importance of considering the 

co-evolution of multiple factors when addressing climate change mitigation. The framework combines the 

CO-STIRPAT approach with dynamical systems through optimization principles. The framework can help 

countries optimally achieve their NDC goals by designing comprehensive policies that synchronize emission 

reductions, economic growth, and capital accumulation with clean energy mixes, carbon pricing, energy efficiency, 

and carbon intensity. This methodology can also help assess the feasibility of NDC targets based on the 

assumption that the causal relationships between components and implied relative prices will remain stable in 

the future. In the case of South Korea's observational data, the predicted baseline pathway under current 

economic conditions is likely to be higher than the NDC target pathway. The result indicates that policy 

implementation may need to be improved over the projection period to 2030 to achieve the NDC target. Or it may 

be necessary to appropriately slow down the pace of NDC target increases to a level consistent with economic 

conditions.  

There are several directions for future research. First, an underlying assumption of this analysis is that the 

components of IPAT, ImPACT, STIRPAT, and CO-SITRPAT accurately capture the main factors driving carbon 

emissions. Future research could examine the impact of including other factors to validate this assumption. Next, 

the analysis estimates a set of implied relative prices that satisfy the optimal conditions justified by current 

economic conditions and assumes that they will remain stable over the forecast period. Future research could 

formulate a model that captures unstable price changes over a longer forecast period. Finally, our dynamic system 

is based on simple causal relationships between components by allowing for feedback loops as well as time lags 

only through capital accumulation. Future research could attempt more sophisticated feedback loops, such as a 

direct feedback loop between carbon emissions and economic growth following the spirit of green growth 

strategy. 

Our analysis provides a rigorous description and intuitive interpretation of the feasibility of NDC targets and 

the effectiveness of climate policies. The framework can be used as a flexible operational tool to better understand 

country-specific circumstances and design comprehensive climate policy mixes. We hope that this framework can 

be a step forward in advancing our understanding of how to effectively and efficiently close existing gaps in NDC 

targets. 
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Appendix 

A1.Parametric specification of dynamic system. 

The CES (constant elasticity of substitution) production function is expressed as follows: 

𝑄𝑡 = 𝑓(𝐾𝑡−1, 𝐿𝑡) = 𝐴[𝛼 (𝐾𝑡−1)𝜌 + (1 − 𝛼)(𝐿𝑡)𝜌]
𝑣

𝜌𝜂𝑡 (𝐴 − 1) 

𝑙𝑛(𝜂𝑡)~𝑁(𝜇𝑄 , 𝜎𝑄
2) 

where Qt  is the total output produced, Kt−1 and Lt  represent the capital and labor inputs as factors of 

production. A is the efficiency metric to capture the portion of the growth in output not explained by growth in 

inputs of capital and labor used in production. α is the weight representing the share of capital in the production 

process. 𝜌 is the elasticity of substitution between two inputs, and it determines the curvature of the production 

function. There are three special cases of the CES production function, depending on the value of𝜌: Cobb-Douglas 

production function when𝜌 → 0, perfect substitutes when 𝜌 → 1, and perfect complements (Leontief production 

function) when 𝜌 → −∞. 𝑣 represents the degree of homogeneity of the production function showing the 

returns to scale. The CES production function exhibits a decreasing return to scale for 𝑣 < 1, a constant return to 

scale for 𝑣 = 1, and an increasing return to scale for 𝑣 > 1, respectively. The residual term of the production 

causal relationship, ηt, is assumed to follow a log-normal distribution. For the tractability of analysis and 

reliability of results, we use the following assumptions for these parameters. 

𝐴 > 0; 0 < 𝛼 < 1; 𝜌 < 1; 0 < 𝑣 ≤ 1 

The causal relationship functions for other components have the following forms: 

Yi,t = βi,0 (1 +  exp[−βi,1(t − βi,2)])⁄ + βi,3Xi,t + βi,4Xi,t
2 + εi,t (A − 2) 

εi,t~N(μi , σi
2) 

where Yi is an output component and Xi,t is an input component for an i-th causal link in our dynamic system.t 

is a time variable (year), and the logistic time trend of the function maps a real-valued number to a value between 

0 andβi,0, the upper asymptote. βi,1 represents the slope around the inflection point, controlling the growth 

behavior. If βi,1 < 0, then Xi,tincreases over time and if βi,1 > 0then Xi,tdecreases over time.βi,2controls the 

location of the inflection point (relative to t), and thus the function has an S-shaped curve with an inflection point 

at t = βi,2. These characteristics of the logistic function allow us to predict the time-varying level in each output 

component. Then we combine the logistic time trend with a quadratic function to predict the future path of each 

output component. The residual term of the i-th causal relationship, εi,t , is assumed to follow a normal 

distribution. 

Using the CES production function in Equation A-1, we can derive the levels of capital and labor that minimize 

production costs given the prices of the factors and then derive the minimized cost by multiplying those factor 

quantities by the corresponding factor prices. For a given production level Qt, the optimal cost Θ(Qt) can be 

expressed as a function of cost-minimizing capital K̂(Qt), cost-minimizing labor L̂(Qt), and relevant prices: 

𝛩(𝑄𝑡)  =  𝑟𝐿�̂�(𝑄𝑡) + 𝑟𝐾𝐾(𝑄𝑡) = (𝑟𝐹𝐴−
1

𝑣) 𝑄𝑡

1

𝑣 (A − 3) 

𝑟𝐹 = [𝛼𝜎𝑟𝐾
(1−𝜎)  + (1 − 𝛼)𝜎𝑟𝐿

(1−𝜎)]
1

(1−𝜎) 
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where σ = 1 (1 − ρ)⁄ . In Equation A-3, the optimal cost is linearly related to the weighted average of the factor 

prices rF and nonlinearly related to the level of production Qt. In Equation A-1, if the parameter representing 

returns to scale 𝑣 is less than 1 (decreasing returns to scale), the optimal cost function in Equation A-3 is convex 

concerning the production level Qt. In other words, the slope of the factor cost function gets larger and larger as 

the production level increases. This feature contributes to the convex shape of the total cost function presented in 

Figure 2-B. 
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