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ABSTRACT 

Credit scoring remains one of the most important subjects in financial risk management. Although the methods in 

this field have grown in sophistication, further improvements are necessary. These advances could translate in 

major gains for financial institutions and other companies that extend credit by diminishing the potential for losses 

in this process. This research seeks to compare statistical and artificial intelligence (AI) predictors in a credit risk 

analysis setting, namely the discriminant analysis, the logistic regression (LR), the artificial neural networks (ANNs), 

and the random forests. In order to perform this comparison, these methods are used to predict the default risk for 

a sample of companies that engage in trade credit. Pre-processing procedures are established, namely in the form 

of a proper sampling technique to assure the balance of the sample. Additionally, multicollinearity in the dataset is 

assessed via an analysis of the variance inflation factors (VIFs), and the presence of multivariate outliers is 

investigated with an algorithm based on robust Mahalanobis distances (MDs). After seeking the most beneficial 

architectures and/or settings for each predictor category, the final models are then compared in terms of several 

relevant key performance indicators (KPIs). The benchmarking analysis revealed that the artificial intelligence 

methods outperformed the statistical approaches. 
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1. Introduction 

Companies acquire funds not only from specialized financial intermediaries but also from their respective 

suppliers (Fabbri & Menichini, 2010). This practice is denominated trade credit and frequently occurs in the B2B 

market when buyers delay payments to suppliers for merchandise and/or services. If credit is approved for a certain 

client, there is always the possibility that this client will not honor the agreement to repay the amount in question. 

On the other hand, if credit is denied, it is possible that a potentially profitable client was handed over to rival 

companies. Therefore, both issues must be taken into consideration when deciding whether to extend credit to any 

applicant. Credit risk, in general, is a topic of the utmost importance in financial risk management, being a major 

source of concern for financial and banking institutions (Khashman, 2010). In the last decades, quantitative 

methods to manage credit risk have grown in sophistication. The end goal is to separate good credit applicants from 

bad ones. The criterion used in this classification is the ability of the applicants to repay the full amount of the loan. 

Usually, this is achieved by feeding a predictive model with past customer data, thus finding the relationships 

between the clients’ characteristics and the potential for default (Huang, Liu, & Ren, 2018). There is substantial 

research material on this topic, as only a small improvement in prediction accuracy may lead to large gains in 

profitability (Kvamme, Sellereite, Aas, & Sjursen, 2018).  

Until recently, to build these credit scoring models, the sole solution was to employ statistical models. The linear 

discriminant analysis and logistic regression are among the statistical techniques widely used for this purpose 

(Baesens, Setiono, Mues, & Vanthienen, 2003). However, the emergence of artificial intelligence methods provided 

an opportunity for credit risk professionals. There are numerous studies showing that machine learning tools like 

artificial neural networks, decision trees (DTs), and support vector machines present a chance to improve the 

prediction accuracy of statistical models with regard to credit risk (Vellido, Lisboa, & Vaughan, 1999; Huang, Chen, 

Hsu, Chen, & Wu, 2004; Ong, Huang, & Tzeng, 2005). Despite significant developments in terms of newer classifiers, 

the literature on credit risk has not kept pace with the breakthroughs in predictive learning (Lessmann, Baesens, 

Seow, & Thomas, 2015; Jones, Johnstone, & Wilson, 2015). Indeed, more recent techniques, such as random forests 

and generalized boosting, have been explored by a limited number of studies, although some sources report them 

as superior to previous methods (Jones et al., 2015).  

The main purpose of this work is to add to the existing body of research by further studying these new AI 

techniques, allowing for a better understanding of how these compare to older and more established methods of 

credit scoring with respect to performance and applicability. This research offers a comprehensive view of how 

diverse statistical and artificial intelligence predictors compare on credit scoring. More specifically, this study 

focuses on the discriminant analysis, logistic regression, artificial neural networks, and random forest (RF) methods. 

It significantly adds to the existing literature by assessing the robustness of these various techniques in the 

estimation of the default risk of a set of companies engaging in trade credit. This experiment uses a novel sample 

that has not been explored in the literature before.  

2. Theoretical Framework 

2.1. Linear Discriminant Analysis 

The linear discriminant analysis (LDA) may be defined as a statistical technique utilized to classify an 

observation into one of several a priori groupings depending on the observation’s characteristics (Altman, 1968). 

There are some limitations regarding the validity of this method. It is dependent on stringent assumptions, namely 

that all variables must present a normal distribution and be mutually independent (Huang et al., 2004; S us ters ic , 

Mramor, & Zupan, 2009). 
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Considering a certain feature vector with 𝑠 dimensions, it is important to know what linear function of these 

values best separates the groups in question. This function corresponds to the expression that follows.  

𝑓(𝑥) =  𝜆1𝑥1 + ⋯ + 𝜆𝑠𝑥𝑠 (1) 

In this formula, 𝜆𝑖  and 𝑥𝑖  represent the discriminant coefficient for explanatory variable 𝑖 and the value for 

indicator 𝑖, respectively. In the LDA, the goal is to find the values for these coefficients that maximize the differences 

between the groups as measured by a given objective function. The original method proposed by Fisher in 1936 

sought to find the coefficients that maximized the ratio of the explained variance to the unexplained variance. This 

corresponds to the F-ratio, which may be computed with the following expression:  

𝐹 =  
∑ 𝑁𝑔 (𝑦𝑔 − 𝑦)

2𝐺
𝑔=1

∑ ∑ (𝑦𝑝𝑔 − 𝑦𝑔)
2𝑁𝑔

𝑝=1
𝐺
𝑔=1

(2) 

This formulation considers a total of 𝐺 groups in a dataset, with 𝑔 and 𝑦𝑝𝑔 being the index for the groups 

and the observation 𝑝 of group 𝑔, respectively. Additionally, 𝑁𝑔  represents the number of cases in each group, 

while 𝑦𝑔 is the mean for group 𝑔 and 𝑦 is the overall sample mean. Analyzing this expression, one can observe 

that its numerator corresponds to the sums of squares between groups and the denominator to the within-groups 

sums of squares (Altman, 1968).  

Once the coefficients have been computed to maximize the discriminant power of the function, it is possible to 

calculate the score for each observation in the sample and assign it to a certain group accordingly.  

The LDA technique was first applied to credit scoring by Edward Altman in 1968. This approach is designated 

by Altman’s Z-score and served as the basis for the future applications of discriminant analysis in credit scoring. 

Altman’s method implies assigning each instance to the group it resembles the most. The comparisons are measured 

by a chi-square value, and classifications are made based on the relative proximity of the instance’s score to the 

various group centroids (Altman,1968). 

2.2. Logistic Regression 

Logistic regression is one of the most widespread statistical tools for classification problems in general (Ong et 

al., 2005). Much like the LDA, it is a technique used in problems with categorical dependent variables displaying 

linear relationships with the explanatory variables. Despite the similarities, it should be stressed that the logistic 

regression model does not assume the populations in classification problems to be normally distributed. Unlike the 

LDA, the logistic regression can deal with various distribution functions (Press & Wilson, 1978; Ong et al., 2005), 

and is thus, arguably, a better option for credit scoring tasks. 

Assuming the case of a binary logistic regression that is used to determine if an event 𝐸 will happen (e.g., 

company bankruptcy), then 𝜋(𝑥) may be defined as the probability of 𝐸 occurring given the n-dimensional input 

vector 𝑋 . As there are only two possible outcomes, 1 - 𝜋(𝑥)  is equal to the probability of the event 𝐸  not 

happening. The linear form of the LR model may be obtained by applying the natural algorithm to the odds ratio, 

which is equivalent to the logit of 𝜋(𝑥). This leads to the following mathematical formulation: 

𝑙𝑜𝑔𝑖𝑡(𝜋(𝑥)) = 𝑙𝑜𝑔
𝜋(𝑥)

1−𝜋(𝑥)
= 𝛼 + 𝛽𝑋 (3)  

different formulation of the logistic regression is usually obtained by relating the probability of a given event, 𝐸, 

happening, conditional on the vector 𝑋 of observed explanatory variables, to the vector 𝑋 (Press & Wilson, 1978). 

This corresponds to expression 4, which may also be obtained by manipulating the former formula.  
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𝜋(𝑥) = 𝑃(𝐸|𝑥) =
1

1 + 𝑒−𝛼−𝛽𝑋
(4) 

The output of this expression describes a sigmoid curve, taking values between zero and one. After the 

parameter 𝛼  and the vector of coefficients 𝛽  are calculated, it may be used as a predictor. The maximum 

likelihood method commonly used in statistics can be applied to estimate these parameters.  

2.3. Artificial Neural Networks 

Artificial neural networks started being studied as a possible credit risk predictor in the nineties (Tang et al., 

2018) and, since then, have become a mainstream tool utilized by several financial institutions and other companies. 

The potential of this technique is confirmed by comparative studies either showing this tool outperforming 

discriminant analysis (Khemakhem & Boujelbe ne, 2015; Wo jcicka- Wo jtowicz & Piasecki, 2017) or suggesting the 

use of a hybrid model as the best alternative (Lee, Chiu, Lu, & Chen, 2002; Lai, Yu, Wang, & Zhou, 2006).  

Neural networks are composed of several artificial neurons, which can be regarded as processing units. These 

elements are interconnected via synapses that convey values, with each one of these connections having an assigned 

weight. When a neuron performs a computation, the first step is to do a weighted sum of the inputs; afterwards, the 

result is used in the transfer function to calculate the neuron’s output. Sigmoid, linear, and step functions are 

common transfer functions (Angelini, di Tollo, & Roli, 2008). 

All neural network build-ups require the partitioning of the input data into training, validation, and testing 

subsets, which have distinct purposes. The training subset is used in the learning stage of the models, while the 

validation subset assures that every change in the models’ parameters truly reduces the overall error. In the absence 

of validation, the models may overfit by modeling noise in the training data. Finally, the testing subset provides an 

independent way to assess the predictive ability of the models.  

The first artificial neural network considered in this research is the multilayer perceptron (MLP), which is the 

most frequently used type of neural network in credit risk assessment (West, 2000), having been tested in various 

studies. The backpropagation rule is a widely used technique to update the weights of these networks (Zhao et al., 

2015; Huang et al., 2018). Backpropagation algorithms are supervised learning tools. These techniques begin by 

initializing the weights with small random values (West, 2000). Subsequently, the gradient of the error’s variation 

with respect to changes in the weights is computed, and these weights are modified in the direction which reduces 

the overall error of the network.  

The other artificial neural network tested in this research is a radial basis function (RBF) neural network. The 

first layers of these models just carry the data directly to the ensuing layers. A fundamental aspect of these networks 

is that the hidden layers are entirely composed of neurons with radial basis transfer functions, such as Gaussian 

functions (Ayala & Coelho, 2016). The outcome of a radial basis function is dependent on three parameters: the 

received input vector 𝑋, the center of the respective neuron 𝑐𝑗 , and the spread 𝜎𝑗. The training that RBF networks 

undergo allows for the determination of the appropriate number of hidden layers and also the best centers and 

widths for each hidden neuron (Chen, Wang, Liu, & Wu, 2018). These parameters will be the ones that allow for a 

minimization of the network’s overall error. 

The estimation of the centers can be done via a clustering algorithm. The k-means clustering technique, for 

example, is one of the common and intuitive methods of this type. This algorithm considers a set of initial centers 

and then iteratively changes the centers to minimize the total within-cluster variance (Hastie, Tibshirani, & 

Friedman, 2008). First, all the input data points are attributed to the closest center, which effectively corresponds 

to dividing the data into separate subsets. Afterward, each center is recalculated to correspond to the vector of the 

means for the features of the data points composing the respective subset.  
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Despite the great promise of ANNs in general, there is a major disadvantage that should be noted. Neural 

networks work as black boxes, which basically means that it is very difficult to interpret the weights and how the 

results are achieved (Abdou & Pointon, 2011). This may severely restrict the use of such techniques.  

2.4. Random Forest 

This research also includes the test with the random forest, a much newer artificial intelligence technique. A 

random forest is a homogenous ensemble predictor. Its predictions are dependent on the individual outputs of 

various decision trees. The aggregation of the many outputs obtained into a single outcome may be done by 

averaging over all the output values when predicting a numerical outcome or by performing a vote when predicting 

a class (Breiman, 1996). There is evidence that this procedure of model combination can lead to increased accuracy  

(Paleologo, Elisseeff, & Antonini, 2010; Finlay, 2011; Lessmann et al., 2015, Dumitrescu, Hue , Hurlin, & Tokpavi, 

2022). 

Assuming it is used for classification purposes, a random forest (RF) is analogous to a voting committee. Each 

decision tree reaches a prediction or classification, and then the results of all trees are checked to find what is the 

output of the majority. It is implied in this logic that the decision trees reach different results and consequently 

display distinct structures. A fundamental challenge when building an RF is to ensure decision tree diversity. The 

diversification of decision trees is achieved via two mechanisms, bootstrap aggregating (bagging) and random 

feature selection. 

Bootstrap aggregating is a procedure that allows each tree to use a different sample as input without 

partitioning the data. These replicate datasets, each consisting of a given number of cases, are drawn at random, but 

with replacements, from the original dataset (Breiman, 1996).  

In contrast, the random feature selection mechanism dictates that each node is assigned a random subset of 

variables that it may use in the node-splitting procedure. This random selection of features at each node decreases 

the correlation between the decision trees, causing a reduction in the random forest error rate (Bryll, Gutierrez-

Osuna, & Quek, 2003; Archer & Kimes, 2008).  

Random feature selection has been demonstrated to perform better than bagging alone (Dietterich, 2000), 

namely in problems with several redundant features (Archer & Kimes, 2008). This strategy has also been proven to 

help prevent the overfitting phenomenon. 

However, after the random forest is applied, its results are not easily interpretable, which is inconvenient when 

it is critical to understand the interactions between the variables of the problem (Breiman, 2001). 

2.5. Comparison of Statistical and Artificial Intelligence Approaches in Credit Scoring  

Although artificial intelligence and statistical methods are widely used in credit scoring, each approach has its 

own strengths and weaknesses. AI techniques can handle complex data structures and non-linear relationships 

among variables. The adoption of these methods becomes very attractive due to their high performance and ability 

to process large datasets (Baser, Koc, & Selcuk-Kestel, 2023). Some of these models also display an increased 

resilience to outliers (Batista, 2012). AI-based credit scoring models can outperform traditional regression models 

in terms of accuracy and robustness.  

However, these can be less transparent and more difficult to interpret, acting like black boxes, making it 

challenging to explain their decisions. When algorithms make decisions based on hidden patterns or factors that 

are difficult to understand or explain, it may raise concerns about fairness and potential bias in the models.  

Statistical methods, on the other hand, have been widely used in credit scoring for many years. They are well-

established, transparent, and easy to interpret, making it easier for lenders to explain their decisions to borrowers. 



Reis and Quintino                                            Journal of Economic Analysis 2023 2(3) 94-112 

99 

However, statistical models are less flexible and may not be able to capture the full range of relationships among 

variables in credit data. Moreover, they are sensitive to outliers and multicollinearity, which can negatively affect 

their accuracy and robustness (Dawoud, Awwad, Eldin, & Abonazel, 2022).  

3. Input Data Collection, Analysis and Treatment  

3.1. Input Data Collection Process 

The data used in the models were obtained from the Orbis financial database. Bureau van Dijk (BvD), a Moody’s 

Analytics Company, is responsible for the capture, treatment, and analytical structuring of the data present in this 

database. Access to the database is provided in exchange for a subscription fee, albeit there is a free trial version 

available online at BvD’s website. 

The financial information used in this research was extracted from a list of Galp’s B2B clients and concerns the 

fiscal year of 2016. Additionally, the information regarding the clients’ financial status in the fiscal year of 2017 was 

retrieved from the internal data kept by Galp.  

3.2. Description of the Input Variables 

Table 1. Categories of explanatory variables tested in the models and corresponding indicators. 

Type of Indicator Variables Units 

Raw Financial ln(Total assets) ln(€) 
Financial Autonomy  Equity / Total assets - 
 Cash flow variation (2015 – 2016) Percentage 
Growth Trends Total assets variation (2015 – 2016) Percentage 
 Equity variation (2015 – 2016) Percentage 
Sector of Activity BvD major sector - 
Company Maturity Number of years active Years 
 
 
 
 
 
Profitability Ratios 

ROE using profit or loss before tax 
ROA using profit or loss before tax 
ROCE using profit or loss before tax 
ROE using net income before tax  
ROA using net income before tax 
ROCE using net income before tax 

Percentage 
Percentage 
Percentage 
Percentage 
Percentage 
Percentage 

 Profit margin Percentage 
 EBITDA margin 

EBIT margin 
Cash flow / Total assets 
Profit per employee 

Percentage 
Percentage 
Percentage 
Thousands of € per employee 

Operational Ratios 
Net assets turnover - 
Credit period Days 

Structural Ratios 

Liquidity ratio - 
Current ratio - 
Gearing 
Debt / EBITDA 

- 
- 

 

In order to obtain the most explanatory input variables, several financial and non-financial indicators were 

extracted from the Orbis database or computed from the exported information. This data includes raw financials, 

equity ratios, growth tendencies, operational ratios, the maturity of the companies, profitability ratios, sectors of 

activity, and structural ratios. The following table details the variables that were tested. 

The final indicator that was included, company status in 2017, corresponds to the dependent variable for all the 

models. In this variable, all companies are assigned to the mutually excluding categories: 
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• Active: The company remains in operation. 

• Insolvent: The company has filed for bankruptcy. 

• Undergoing a Special Revitalization Process (SPR): The company has been given protection against 

creditors status, preventing an imminent insolvency.  

• Non-compliant: The company has failed to pay for the products and/or services provided by Galp. 

3.3. Aggregation of company outcomes  

The company status variable poses a challenge, as it must be decided whether to aggregate the negative 

categories under a broader class of bad companies, merge just some of these, or keep all of them separate.  

Although there are several possible groupings for the distinct strategies, a preliminary analysis is enough to 

understand that some seem counterintuitive. The discriminant analysis, as well as the artificial neural networks 

and other predictive models, offer similar predictions for close inputs; as such, it is detrimental to merge classes 

that are characterized by very dissimilar inputs. Therefore, one must take this factor into consideration when 

deciding on the best course of action regarding the aggregation of classes.  

Both insolvent and SRP companies display similar and very poor financial indicators. Hence, this pair of classes 

is the most logical choice to undergo merging. Non-compliant companies display better financial indicators than 

the other two negative categories, although these indicators remain deteriorated in relation to active companies.  

After experimenting with the aggregation strategies, it became evident that it is beneficial to keep only two 

possible outcomes. This is due to the similarity of the inputs obtained for insolvent, SPR, and non-compliant classes. 

Furthermore, the main goal of any creditor is to understand if there is a significant risk of default for any given 

potential debtor, and it is notorious that the applicants included in these three classes present such a risk. 

Considering this, it was ultimately decided to pursue a two-outcome aggregation strategy, merging the insolvent, 

SPR, and non-compliant categories in a broader class of bad companies. The active companies remain in a separate 

class of good companies. 

3.4. Sampling Procedure 

Although the majority of credit scoring research has not focused on the input samples’ characteristics, the size, 

and balance of such datasets have a tremendous potential to affect the performance of the predictive models. This 

latter characteristic refers to the proportion of the groups in the sample. Ideally, considering a binary outcome 

scenario, half the instances would belong to one group and the remaining to the other. Some methods are more 

sensitive than others to changes in the input data’s size and structure, but both statistical and AI techniques are 

affected by these features to varying degrees.  

There are two options to manipulate the balance of a sample, under-sampling by reducing the number of 

instances of the majority class or over-sampling through an increase of the cases in the minority class. In this 

research, it was decided to under-sample the majority class, which encompasses the cases of good companies. 

Although over-sampling may produce better results, according to Crone & Finlay (2012), this dataset proved 

extremely unbalanced due to a pronounced deficiency of bad companies, making it difficult to employ this technique. 

Considering that the minority class (which encompasses the cases of bad companies) is much smaller, over-

sampling would cause certain cases in this class to be repeated several times. This repetition may lead the models 

to overfit, thus degrading the results.  

After selecting a subset of instances from the good companies’ class, the nearly perfectly balanced dataset 

described in Table 1 was obtained. 

The slightly bigger number of good companies in relation to the total number of bad companies is due to a few 
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detected cases of duplicated corporations in the data. This issue was solved by studying the causes of each repetition 

and assigning these cases to a sole category. 

Table 2. New distribution of the cases by the categories. 

Group Subgroup  Observations Percentage of total 

Good Active 1001 50.2% 
Bad Insolvent 701 35.2% 

SPR 265 13.3% 
Non-compliant 27 1.4% 

3.5. Missing and Invalid Data  

Another important aspect to be addressed relates to the presence of missing values in the dataset. The usual 

reasons for missing values in credit scoring problems are that those values were already missing in source data or 

were out of the theoretically allowed range. The latter motive is quite common in these situations due to typos or 

transcription errors (Angelini et al., 2008). On the other hand, these lapses may be due to computational errors. 

After analyzing the dataset, two main types of missing data were detected, NA and NS lapses. The first one 

corresponds to data that is truly missing, NA being an acronym for not available in the database. On the other hand, 

NS stands for not significant and is used when indicators expressed as percentages take values near zero. As NS 

cases do not truly represent missing data, these were replaced by null values in the sample. This approximation 

allows for the use of such instances.  

3.6. Correlation Analysis 

The multicollinearity problem refers to the existence of strong correlations between independent variables in 

a dataset. Many authors have stated before that the logistic model becomes unstable in the eventuality of a strong 

dependence among predictors, as it seems that no single variable is important when all the others are in the model 

(e.g., Aguilera, Escabias, & Valderrama, 2006). This weakness is shared with the LDA method. 

Multicollinearity can cause slope parameter estimates to have magnitudes or signs that are not consistent with 

expectations and, in some situations, lead independent variables in a regression model not to demonstrate 

statistical significance, despite large individual predictor-outcome correlations and a large coefficient of 

determination, R2 (Thompson, Kim, Aloe, & Becker, 2017). 

A common technique used in the detection of multicollinearity involves the computation of the variance 

inflation factor. Variance inflation factors over 10 are usually considered to be indicative of multicollinearity. 

However, certain authors point out that this threshold is very lenient. Indeed, a VIF of 10 for a given independent 

variable implies that 90% of its variability is explained by the remainder indicators. Another typical threshold is a 

maximum VIF of 5 (Craney & Surles, 2002). This is a more conservative approach that was deemed adequate, as 

certain variables displayed VIF values nearing 10 and would not be excluded with the former criterium.  

The correlation analysis indicated that there are clear signs of multicollinearity in the original data, with several 

VIF values exceeding the threshold defined. In order to solve this problem, the variables were removed iteratively 

until no VIF values were over 5. This removal procedure was performed, giving preference to the variables that are 

more correlated. The final dataset obtained displays no indications of multicollinearity.  

3.7. Outlier Analysis 

Although there is no universally accepted definition, several authors refer to outlier instances as observations 

that appear to deviate markedly from other members of the sample in which these occur (e.g., Grubbs, 1969; Barnett 
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& Lewis, 1994; Hodge & Austin, 2004). When fitting a model to the data, outliers need to be identified and eliminated 

or, alternatively, examined closely if these cases are the focus of the analysis (Beliakov, Kelarev, & Yearwood, 2011). 

In credit scoring, these instances are of limited interest, but the potential to negatively affect the results of the 

models must be eliminated.  

According to Filzmoser (2004), the basis for multivariate outlier detection is the Mahalanobis distance (MD). 

Some examples of these are techniques with the computation of Mahalanobis distances (MDs) with robust 

indicators, such as the method proposed by Leys, Klein, Dominicy & Ley (2018) with a minimum covariance 

determinant approach, or entirely distinct approaches using projection pursuit strategies. This metric measures the 

distance of each instance in the data to a central point in multivariate space. The key feature of this measure is that 

it considers the correlations between variables, as well as the respective scales (Brereton & Lloyd, 2016). The 

Mahalanobis distances may be computed with the following expression: 

𝑀𝐷 =  √(𝑥𝑖 − 𝑥̅)𝑆−1(𝑥𝑖 − 𝑥̅)𝑇 (5) 

This formula considers that 𝑥𝑖  is the vector for a given data instance, while 𝑥̅ is the arithmetic mean of the 

dataset and 𝑆 represents the sample covariance matrix.  

However, outliers are known to distort the observed mean. A small cluster of outliers may impact the mean in 

such a way that these are no longer detected as aberrant instances. Additionally, the distortion brought on by the 

outliers may be so high that normal instances are wrongly labeled as outliers. These occurrences are commonly 

referred to as masking and swamping, respectively.  

Some studies in various research fields have proposed alternative procedures for outlier detection that seek to 

minimize the masking and swamping effects. Some examples of these are techniques with the computation of 

Mahalanobis distances (MDs) with robust indicators, such as the method proposed by Leys, Klein, Dominicy & Ley 

(2018) with a minimum covariance determinant approach, or entirely distinct approaches using projection pursuit 

strategies. 

To prevent the masking and swamping effects phenomena, it was decided to examine the presence of outliers 

by computing MDs with geometric medians (GMs). This indicator is one of the most common robust estimators of 

centrality in Euclidean spaces (Fletcher, Venkatasubramanian & Joshi, 2008). To compute this parameter, the 

Weiszfeld algorithm is employed. This is an iterative procedure that converges with the appropriate initialization 

values to the point that presents the lowest sum of Euclidean distances for all the sample instances.  

The computation of the GMs does not tolerate missing values. As such, it is necessary to replace these lapses 

with usable data. The techniques used for this purpose are called imputation procedures. After analyzing the 

sample’s pattern of missing data and assessing if monotonicity is present, it was decided to proceed with a fully 

conditional specification imputation method. 

This procedure warrants the separation of the sample into two groups, which contain exclusively good and bad 

companies. Since the whole sample contains two distinct populations with very different characteristics, this 

splitting is fundamental to ensure that the MDs are computed with the GMs of the class (good or bad) to which each 

instance belongs. 

As normality tests proved that various indicators do not follow normal distributions, it was opted to use an 

alternate exclusion criterion to the comparison of the MDs with a quantile of the chi-squared distribution. There is 

no guarantee that the MDs follow this specific distribution without multivariate normality. By building scatter plots 

with the sample ID numbers and the robust MDs, it is possible, via visual inspection, to detect any potential outliers. 

These plots are displayed in Figures 1 and 2. 

Some instances in these scatter plots stand out for being clearly anomalous. It was decided to label as potential 

outliers all the cases with robust Mahalanobis distances above 1000. These points are marked in red for easier 
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identification. In order to comprehend to what extent these flagged instances are aberrant, there was an analysis of 

the indicators presented by these companies. This study reinforced the idea that such corporations display altered 

values for several indicators.  

 

Figure 1. Scatter plot of the robust Mahalanobis distances for the good companies. 

 

Figure 2. Scatter plot of the robust Mahalanobis distances for the bad companies. 

Considering that the results of the robust MDs analysis were confirmed for good and bad companies by the 

subsequent findings of extreme values for several indicators in the flagged cases, the decision was taken to label 

these nine instances as outliers and remove them from the sample. The outlier detection technique implemented in 

this section was partially based on the work of Semechko (2019). Further details are provided in the reference 

section. 

4. Model Development and Performance  

4.1. Key Performance Indicators Used 

The models in the following sub-sections are evaluated in terms of several key performance indicators. These 

include the percentage of correctly classified (PCC) instances, which measures the accuracy of the techniques. The 

sensitivity and specificity are also presented, which measure the imperviousness of the models to type I and type II 

errors, respectively. Assuming a null hypothesis that the company applying for credit will not default next year, the 

sensitivity is equal to the true positive rate, and the specificity is equal to the true false rate.  

The area under the curve (AUC) is also computed for all models. The AUC corresponds to the area under the 

receiver operating characteristic (ROC) curve. The ROC curve is obtained by plotting, for each classification 

threshold, the rate of true positives against the rate of false positives (Swets, Dawes, & Monahan, 2000). Finally, the 

Gini Index is included. This coefficient is a chance standardized alternative to the AUC that measures how well the 

models separate the existing groups. Greater values for the AUC and Gini Index are desirable, as these indicate a 

higher discriminatory ability. It should be noted that, in cases of conflicting performance ranks, these last two 

measures are prioritized in this work. 
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4.2. Development of the Linear Discriminant Analysis Model 

The discriminant analysis model was applied to the data with IBM SPSS Statistics 25. Considering the 

capabilities of the software, alternative discriminant analysis models were computed using different combinations 

of stepwise techniques and entry/removal criteria.  

After experimenting with various selection rules, it was found that the best results were obtained by including 

in the model any explanatory variables with a minimum F value of 3.00 and excluding those with F values inferior 

to 1.00. 

Following the computation of the discriminant coefficients, it was possible to assess the relative importance of 

the independent variables included in the model. The standardized coefficients are particularly important to assess 

the discriminating ability of the explanatory variables, as the standardization allows for the comparison of variables 

expressed in distinct scales. The five variables with the most predictive potential were found to be the shareholder 

equity ratio, Cash flow / Total assets, return on assets using net income, credit period, and the major sector of 

activity, by descending order of discriminating ability.  

The key performance indicators were then computed for the best discriminant analysis model obtained. These 

are listed in Table 2. 

Table 3. KPIs for the linear discriminant analysis model. 

PCC Sensitivity (%) Specificity (%) AUC Gini Index 
80.0 88.9 67.7 0.863 0.726 

4.3. Development of the Logistic Regression Model 

The logistic regression model was also applied with IBM SPSS Statistics 25. There is no need to use a 

multinomial logistic regression, as the considered output is dichotomous. Therefore, a binary logistic regression 

model was implemented. 

The first step in the development of this model is choosing the input variable selection procedure. There are a 

variety of stepwise techniques available in this software, namely forward selection and backward elimination 

procedures.  

After careful experimentation, the best results were obtained using the forward selection stepwise techniques. 

The maximum number of iterations before model termination was kept at 20; the default setting, overriding this 

configuration, did not improve the results. In terms of the thresholds used in the stepwise methods, the best results 

were obtained when the probability for the score statistic must be less than 0.01 for entry and over 0.03 for removal. 

The option to include a constant in the LR model remained selected.  

Table 4. KPIs for the logistic regression model. 

PCC Sensitivity (%) Specificity (%) AUC Gini Index 

89.9 93.8 83.5 0.926 0.852 

 

Furthermore, the user interface allows for the definition of the classification cutoff directly, which was kept at 

0.5. Although it is relevant to study the model’s performance under different thresholds, this will be addressed with 

the computation of the remaining KPIs, namely the AUC. Table 3 presents all these performance metrics, which are 

relative to the most robust logistic regression model achieved. 

4.4. Development of the Multilayer Perceptron Model 
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The multilayer perceptron model was applied in the neural networks’ module of IBM SPSS Statistics 25, which 

offers various options regarding how the ANNs are structured and the methods through which the results are 

computed. 

First, the partitioning of the data may be set. This involves specifying the fractions of the sample that are 

allocated to the training, validation, and testing datasets. Secondly, the structure of the MLP network may be 

stipulated in terms of the number of hidden layers, the activation function to be used in these layers, and the transfer 

function of the output layer.  

Finally, there are different options for the learning algorithm to be employed in the networks’ development. 

Considering these possibilities, four different MLP neural networks are proposed, which are detailed in the 

following table. 

Table 5. Features of the MLP networks tested. 

ANN 
Number of 

hidden layers 
Number of 

hidden neurons 
Hidden layers’ 

activation function 
Output layer’s 

activation function 
Training algorithm 

MLP 1 1 
Automatic 
selection 

Sigmoid Identity function 
Scaled conjugate 

gradient 

MLP 2 2 
Automatic 
selection 

Sigmoid Identity function 
Scaled conjugate 

gradient 

MLP 3 1 
Automatic 
selection 

Hyperbolic tangent Identity function 
Scaled conjugate 

gradient 

MLP 4 2 
Automatic 
selection 

Hyperbolic tangent Identity function 
Scaled conjugate 

gradient 

 

Regarding the partitioning of the data, several combinations were selected in accordance with the best practices 

in the literature. The first training-testing-validation ratio, 700:300:0, is the most popular partition, used by 

numerous authors (e.g., Angelini et al., 2008 and Pacelli & Azzollini, 2010), being also the default setting in SPSS. 

The second option, 600:150:250, is used by Lai, Yu, Wang, and Zhou (2006). Lastly, the third partitioning, 

600:200:200, which varies only slightly in relation to the second alternative, is based on the work of Addo et al., 

2018. 

For the comparison between methods to be fair, one must be careful when setting the partitioning strategy in 

SPSS. The percentage of cases attributed to each set may be defined directly in the software’s user interface for a 

given network. However, this introduces the potential for a chance to influence the results. As the cases are randomly 

sampled from the dataset to build the training, testing, and validation sets, the results obtained will be strongly 

influenced by this arbitrary selection. By not guaranteeing the replicability of the partition, the comparison between 

the different architectures cannot yield meaningful results.  

This issue essentially arises because some companies are more difficult to classify than others. Not all instances 

present overwhelmingly positive or negative indicators. These cases are the ones that contribute the most to the 

errors committed by the models. If a given partition randomly samples more of these instances than the others, the 

models using it would tend to display poorer results, although this partitioning strategy is not necessarily inferior 

to the others. The same reasoning applies to comparisons between different models that use the same partitioning 

strategy. A given model may perform better solely because it was evaluated with a test set containing a higher 

percentage of instances that are easier to sort.  

In order to overcome this flaw, a strategy was employed that mitigates the potential for the models’ results to 

be influenced by chance. Firstly, three partitioning variables were defined beforehand. These variables contain 

values that determine the placement of each instance (i.e. , whether it is used for training, testing, or validation). The 

variables’ values are generated in accordance with the partitioning strategy desired and used for the testing of all 

the MLP models for that given strategy. This essentially assures that the networks are comparable if the results were 
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obtained for the same partitioning option, as all of these models were developed with similar initial conditions.  

However, when comparing networks that used different partitioning strategies, which correspond to different 

auxiliary partitioning variables, there is still the potential for chance to affect the analysis. Therefore, it was deemed 

necessary to do multiple runs of the algorithm that generates these variables and then compute the average values 

for the KPIs.  

By averaging out all the performance metrics across the iterations (according to the MLP model and partitioning 

option considered in each iteration), it was possible to compute the results that are presented in Table 5. 

Table 6. Average values of the KPIs after 5 runs for each combination of MLP model and partition. 

Partitioning ANN PCC Sens. (%) Spec. (%) AUC Gini Index 

700:300:0 MLP 1 88.10 93.68 79.32 0.940 0.881 
MLP 2 88.14 93.44 79.92 0.942 0.884 
MLP 3 88.32 94.08 79.28 0.949 0.898 
MLP 4 89.12 93.74 81.74 0.951 0.902 

600:150:250 MLP 1 88.02 91.86 81.22 0.947 0.894 
MLP 2 88.04 91.98 81.10 0.939 0.878 
MLP 3 89.74 93.28 83.28 0.957 0.914 
MLP 4 90.74 94.54 84.04 0.959 0.917 

600:200:200 MLP 1 89.02 93.88 81.00 0.946 0.892 
MLP 2 88.52 93.38 80.38 0.937 0.875 
MLP 3 89.44 94.44 81.08 0.950 0.899 
MLP 4 90.20 94.42 83.14 0.954 0.909 

 

Analyzing the values of the KPIs displayed in this table, which are all relative to the testing set, it can be 

understood how each MLP network performs for all the partitioning strategies considered. After comparing the 

models, it was considered that the most robust network is MLP 4 trained with a 600:150:250 training-testing-

validation ratio. This artificial neural network displays the best value for the AUC, as well as the greatest Gini Index.  

Finally, a sensitivity analysis is performed that computes importance estimates for each independent variable 

in the model. These results imply that the most important indicator is the shareholder equity ratio, followed by the 

Cash flow / Total assets. The variations of the cash flow and equity are considered the third and fourth most relevant 

variables, respectively.  

4.5. Development of the Radial Basis Function Neural Network Model 

The RBF neural network model was applied in the neural networks’ module of SPSS Statistics 25. In the same 

way as the MLP models, there is the option to define the percentages that are assigned to the training, validation, 

and testing sets. Additionally, there are two alternatives for the activation function used in the hidden layers, which 

are ordinary and normalized radial basis functions. The remaining customizable settings are the number of 

elements in the hidden layers and the overlap among hidden units. The overlapping factor is a multiplier applied to 

the width of the radial basis functions.  

As SPSS offers algorithms that define the optimal number of units in the hidden layers and the best values for 

the overlapping factors, these features were not set manually. Thus, the software automatically defined the most 

advantageous architecture regarding these characteristics. Considering that there is no mechanism in place to select 

the transfer function in the hidden layers that achieves the best results, two alternative RBF networks are studied 

that differ solely in this aspect. 

The partitioning schemes defined in the previous section were also considered for the development of the RBF 

models, similarly to what was done before, in order to mitigate the variability in the results that can happen because 

of the random sampling procedure used to build the various sets in SPSS, two partitioning variables were computed 
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and used iteratively to build the networks and collect the KPIs. By averaging out all the performance metrics across 

the iterations, it was possible to obtain the results presented in Table 7. 

It may be concluded from the results displayed in Table 7 that RBF 2 under the second partitioning option (60% 

Training, 15% Testing, and 25% Validation) outperforms the remaining alternatives.  

Table 7. Features of the RBF networks tested. 

Characteristics RBF 1 RBF 2 

Number of elements in the hidden layers Set automatically Set automatically 
Overlapping factor Set automatically Set automatically 
Activation function for the hidden layers Normalized RBF Ordinary RBF  
Partitioning ANN PCC Sens. (%) Spec. (%) AUC Gini Index 

700:300:0 RBF 1 83.54 87.36 77.68 0.892 0.784 
RBF 2 81.64 88.02 72.00 0.884 0.768 

600:150:250 RBF 1 81.02 84.54 75.12 0.889 0.778 
RBF 2 81.28 86.76 72.02 0.892 0.785 

600:200:200 RBF 1 81.88 84.84 76.94 0.890 0.780 
RBF 2 82.38 85.94 76.22 0.891 0.782 

4.6. Development of the Random Forest Model  

The random forest method was applied in MATLAB R2018b. This model can be obtained by using the 

TreeBagger function available in the software, which builds an ensemble of bootstrapped decision trees for either 

classification or regression purposes. This function also selects a random subset of predictors to use at each 

decision split, as described by Breiman (2001) in the original random forest algorithm.  

In terms of the settings used, the model is set for classification purposes, as the outcome considered is 

categorical. The surrogate splits option is activated to handle cases of missing data. If the value for the best split is 

missing, this technique assesses to what extent alternate splits resemble the best split. Afterward, the most similar 

split is used instead of the original optimal division. 

Additionally, optional arguments are included in the function to allow for the assessment of the variables’ 

explanatory power and the computation of the predicted class probabilities. The probabilities are especially 

important, as these are used in the latter plotting of the ROC curve and subsequent computation of the AUC.  

The TreeBagger function offers two possibilities for the algorithm that selects the best split at each node, a 

curvature test (CT) and an interaction-curvature test (ICT). In order to understand which of these algorithms would 

provide the best results, two distinct random forest models were applied, differing in the splitting techniques. The 

relevant KPIs obtained for both models are displayed in Table 8. 

Table 8. KPIs for the different splitting algorithm options. 

Splitting algorithm PCC Sens. (%) Spec. (%) AUC Gini Index 

CT 96.46 98.59 94.32 0.997 0.994 
ICT 96.61 98.49 94.73 0.996 0.992 

 

The random forest using the curvature tests provided the best predictions in terms of AUC, Gini Index, and 

sensitivity. Although the percentage of correctly classified cases is slightly inferior to the one presented by the model 

trained with the interaction-curvature tests, a higher AUC is prioritized. A critical parameter that must also be 

defined is the number of decision trees contained in the ensembles. The results displayed so far were obtained with 

models composed of 50 decision trees, which is a common setting for random forest models. However, it must be 

analyzed if there are gains to be had by adding more trees or, on the other hand, there is an excess of DTs that does 

not translate into a reduction of the prediction error and increases the computation time unnecessarily. To do this, 
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the out-of-bag prediction error is plotted for a variable number of decision trees in the graph presented in Figure 3. 

 

Figure 3. Out-of-bag prediction error obtained for a variable number of decision trees. 

Analyzing Figure 3, one can observe that when the total number of grown trees is small, there is a rapid decrease 

in the out-of-bag prediction error with additional DTs in the ensemble. However, these gains in accuracy are 

progressively smaller, which causes the out-of-bag prediction error to stabilize around an ensemble of 50 trees. The 

error rate observed for an RF containing 50 decision trees is 0.1319, whereas an ensemble of 60 DTs displays a rate 

of 0.1314. As this reduction is hardly significant, it was opted to keep the number of decision trees at 50. 

Analyzing the estimates of the predictors’ importance, it is relevant to point out that the variable with the most 

explanatory power is the shareholder equity ratio, which displays a remarkable score in comparison with the other 

indicators. The credit period and the Cash flow / Total assets indicators display the second and third highest 

importance estimates, respectively. Certain measures, namely the profit per employee and gearing, are also 

important to the robustness of the model. 

5. Benchmarking the models 

By compiling the results obtained so far in terms of the relevant KPIs, it is now possible to compare the credit 

scoring approaches. For each category of predictive methods, the best model in the developmental stage was 

considered for benchmarking purposes. Table 9 exhibits the values for the performance metrics, as well as a ranking 

based on the AUC and Gini Index displayed.  

Table 9. KPIs for all the credit scoring models implemented.  

 

Analyzing Table 9, it can be observed that the random forest model is ranked as the best credit scoring model, 

displaying the highest AUC and Gini Index while also presenting a remarkable overall accuracy. Over 95% of all 

instances are assigned correct predictions, with 98.59% of all future good companies being classified as such. In 

second place, the MLP neural network displayed impressive KPIs, although not up to par with the ones obtained 

with the random forest. On the other hand, the RBF neural network was the overall worst AI model considered, 

being even outranked by the logistic regression model.  

Regarding the statistical methods, the results fall in line with what was observed in other benchmarking studies. 

The discriminant analysis proved to be the least predictive model of all the credit scoring methods tested, which 

Model PCC Sens. (%) Spec. (%) AUC Gini Index Rank 

Linear Discriminant Analysis 80.0 88.9 67.7 0.863 0.726 5 
Logistic Regression  89.9 93.8 83.5 0.926 0.852 3 
Multilayer Perceptron 90.7 94.5 84.0 0.959 0.917 2 
Radial Basis Function Neural 
Network  

81.3 86.8 72.0 0.892 0.785 4 

Random Forest 96.5 98.6 94.3 0.997 0.994 1 
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may be a result of the violation of this models’ assumptions in terms of normality and mutual independence 

regarding the explanatory variables. The logistic regression is ranked as the third best predictor, behind the MLP 

neural network and the random forest. This model provides accurate predictions in almost 90% of the cases and 

demonstrates good sensitivity and specificity, which translate into low rates of type I and type II errors. Despite this, 

the LR model fell short on the more robust KPIs, namely the AUC and Gini Index, which caused it to be ranked behind 

some of the AI models.  

Considering these results, it can be concluded that the MLP neural network and the random forest 

outperformed the statistical approaches in the credit scoring experiment. However, the logistic regression proved 

to be a robust predictor, displaying a high level of accuracy and presenting values for other performance measures 

that come close to the results of the AI alternatives. This is coherent with the recent rise in popularity of the LR 

method, which is a solid compromise in terms of prediction performance and ease of implementation. Furthermore, 

the logistic regression also permits an intuitive interpretation of the model’s parameters, overcoming the black-box 

syndrome of AI predictors.  

6. Conclusions and Further Work  

6.1. Further Work 

Regarding the pre-processing of the input dataset, several measures were taken to assure the quality of the data, 

which necessarily impacts the performance of the predictive models. However, posterior studies may adopt distinct 

methodological approaches to address some limitations of the current research. Specifically, the detection of the 

multivariate outliers could be improved in terms of the rule utilized in the labeling of these instances.  

As the input data in the sample failed the normality tests, it was not possible to proceed with the typical 

criterium of labeling as outliers any observations with robust Mahalanobis distances beyond a given quantile of the 

chi-squared distribution. The detection of the multivariate outliers relied then upon the visual examination of the 

scatterplots with the robust MDs for each observation in the dataset. Consequently, the labeling process lacks 

objectivity. Therefore, it would be beneficial to develop a more sophisticated outlier labeling rule that is applicable 

to multivariate non-normal data.  

Further research could also attempt to mitigate the detrimental effects of the missing values in the dataset. 

Some of the predictor methods applied in this study simply discard such cases, which reduces the size of the sample 

utilized. In order to deal with this situation in the context of the computation of the robust MDs, a fully conditional 

specification imputation procedure was put in place. However, the imputed dataset could not be used in the 

development of some of the models, which limited the applicability of this sample to the pre-processing stage of 

this project. Thus, additional studies could attempt to employ multiple imputation procedures that are compatible 

with the implementation of the credit scoring methods.  

6.2. Conclusions 

Credit risk remains one of the biggest risks for financial institutions and corporations alike. The methods 

utilized in this field have increased in sophistication considerably throughout the years. Nevertheless, any 

improvements in the accuracy rates of the current models are extremely important, as even small advances can 

mean significant savings for creditors by preventing defaults. This served as the main motivation for the current 

study. 

This research allowed for the comparison of statistical and AI predictors, adding significantly to the academic 

literature by designing a credit scoring experiment that compares various distinct types of models using a novel 
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dataset with financial and other relevant data for a selection of Portuguese companies. Credit scoring methods were 

successfully implemented based on this information and used to distinguish between good and bad applicants in 

the timespan of a year.  

As the predictive methods employed may be susceptible to multicollinearity and the presence of outlier 

instances, there was a thorough pre-processing of the dataset prior to the implementation of the models. By 

experimenting with different settings and architectures, it was then possible to select the most robust models for 

each category of predictors. This allowed for the comparison of the KPIs computed for statistical and AI alternatives.  

The benchmarking study completed found that the artificial intelligence methods clearly outperformed the 

more conventional statistical approaches, which was visible across the various performance metrics considered. 

The random forest model demonstrated the most potential, followed by the MLP neural network. Both these models 

achieved an AUC above 0.95, exhibiting an outstanding discriminatory power in the credit scoring exercise 

conducted. The RBF neural network and the logistic regression were the fourth and third most robust models, 

respectively. Finally, the discriminant analysis was the worst performing model overall.  

Regarding the statistical approaches, the results are coherent with the findings of previously published 

benchmarking research articles. The discriminant analysis is dependent on strict assumptions in terms of normality 

and mutual independence regarding the input variables, which was a contributing factor to its disuse among credit 

risk professionals and may explain the poor performance obtained in this experiment. The logistic regression 

proved to be a robust predictor, displaying a high level of accuracy and presenting values for other performance 

measures that come close to the results of the best AI alternatives. It came as far as outperforming the RBF neural 

network. This is consistent with the recent rise in popularity of the LR method, which has been demonstrated to 

offer a solid combination of prediction performance and ease of implementation.  

The random forest models, along with the MLP artificial neural networks, display tremendous potential in the 

credit scoring field. In contrast with the statistical techniques, these methods can model hidden non-linear 

relationships between the explanatory variables and the dependent variable, being also more robust to 

multicollinearity and the presence of outliers. Besides these advantages, these methods do not make assumptions 

regarding the probability distributions of the input data. These factors may have contributed to the observed 

superiority of the AI approaches. The major drawback of these alternatives continues to be the black-box syndrome, 

which makes the interpretation of the results almost impossible. This may restrict the use of such models in certain 

settings due to regulatory requirements. 
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