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ABSTRACT 

This paper analyses a model of private value auctions with symmetric risk-neutral bidders, where bidders' 
private values of an indivisible good are fuzzy. The auction is studied as a game with incomplete information. 
Fuzzy random variables, their quantile functions, and expressions for expectations through quantile functions are 
used. An explicit expression for the solution is found. Also, expected bidders' payments are studied.  
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1. Introduction 

Auctions are a classic and widespread procedure for selling objects. Bayesian-Nash equilibria occupy one of 
the central places in the auction theory (see, e.g., Krishna (2010)). Fuzzy sets provide a way to represent the 
factors that involve a high degree of uncertainty. The aim of this paper is to bridge the gap between 
Bayesian-Nash equilibria and fuzzy value auctions. 

When studying private value auctions it is assumed that each bidder knows the value of the object to himself. 
However, in many cases, the bidder knows the value only approximately. Then, the value can be determined using 
membership function of a fuzzy set. For instance, a membership function can be equal to 1 on the interval 
[98,102], be linearly increasing from 0 to 1 on the interval [95,98], be linearly decreasing from 1 to 0 on the 
interval [102,107], and be equal to 0 outside the interval [95,107]. For another bidder, a membership function can 
be equal to 1 on the interval [94,95], be linearly increasing from 0 to 1 on the interval [92,94], be linearly 
decreasing from 1 to 0 on the interval [95,98], and be equal to 0 outside the interval [92,98]. These fuzzy sets are 
fuzzy numbers since the membership functions are defined on the set of real numbers and each membership 
function at first does not decrease and then does not increase. Besides, each membership function is equal to 1 at 
some point. In particular, a membership function can be equal to 1 at the point 97 and be equal to 0 at the 
remaining points; such fuzzy numbers are called crisp numbers. Then, to each fuzzy number a certain probability 
is assigned; the probabilities are known to all bidders. (A certain probability is assigned to each interval of fuzzy 
numbers if continuous distributions are used.) Thus, one should use fuzzy random variables (i.e., measurable 
functions whose values are fuzzy numbers) rather than random variables. The above example with fuzzy 
numbers may be interpreted in a way that all bidders know the value probability distribution only approximately. 
If there are two types of uncertainty, then fuzzy random variables may be useful. Some unknown quantities can be 
considered as fuzzy numbers, while others can be considered as random variables. For instance, in auctions of 
drilling rights, fuzzy numbers can be used to model oil tract values. However, there is another uncertainty. The 
bidder may be a firm alone or a joint venture. Some firms are budget-constrained. Random variables should be 
used to model uncertainty of this type. 

This paper deals with sealed-bid auctions. A single indivisible good is to be sold to one of N  bidders. A 
bidder with the highest bid obtains the object and has to pay a combination of the two highest bids. Each bidder 
knows the fuzzy value of the object to himself and does not know the value of the object to the other bidders. Each 

fuzzy value iv , 1, ,i N  , is an independent realization of a fuzzy random variable V . The quantile function 

of the fuzzy random variable V  is known to all bidders. For random variables, representation of probability 

distributions with the help of distribution functions and representation of probability distributions with the help 
of quantile functions are equivalent. For fuzzy random variables, quantile functions have the advantage over 
distribution functions (see below in Section 2). 

A model of an independent private value auction was introduced by Vickrey (1961). Later, the properties of 

auctions with crisp values iv  have been intensely studied. Some fundamental results were obtained by Riley and 

Samuelson (1981), Myerson (1981), Milgrom and Weber (1982), and Cox et al. (1984). Each value iv , 

1, ,i N  , is an independent realization of a random variable V . The distribution function F  of the random 

variable V  is known to all bidders. Let ( )b v  be a bid, which corresponds to the value v , and the reservation 
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price is equal to 0. It is a classical theorem that for a first-price auction a symmetric pure Bayesian-Nash 
equilibrium has the form 

       
1

0

( )( )
( )

N
v F xb v v dx
F v


 

   
 

 .                         (1) 

Plum (1992) proved for 2N   that a similar theorem is valid for the auctions where a winner has to pay a 
combination of the two highest bids. Some works have dealt with the application of the fuzzy theory to auctions 
(see, e.g., Fang et al. (2004), Ignatius et al. (2010), Kaur et al. (2017), Zhou et al. (2021), Bhachu et al. (2023)); 
these works do not study Bayesian-Nash equilibria. However, Bayesian-Nash equilibria for fuzzy value auctions 
are of considerable interest. The existence of a distribution function F  of the random variable V  may reflect 
the fact that bidders have market statistics with regard to the competition they are facing in an auction. However, 
fuzzy and fuzzy random models might be preferable with not enough information. There are, also, other ways of 
mathematical modelling of what all bidders know the value probability distribution only approximately. In these 
approaches, the theory of fuzzy sets is not used. Kasberger and Schlag (2017) considered sets of conceivable 
environments. For any bidder, the conceivable environment consists of joint value distributions and bidding 
functions of other bidders. For a given conceivable environment, the bidder chooses the bidder function for which 
the maximum possible losses are minimized. Gretschko and Mass (2024) introduced a worst-case equilibrium 
which is a mixed strategy equilibrium in general. They established the existence of a worst-case equilibrium and 
studied the question of whether the equilibrium is unique. 

In this paper, the auctions where a winner has to pay a combination of the two highest bids are studied and 
formula (1) is generalized in two directions. First, the theorem of Plum (1992) is generalized for arbitrary N . 
Second, an extension to fuzzy numbers v  is given. It is well known that the expected bidder's payment is the 
same for the first-price auction and the second-price auction (see, e.g., Krishna(2010)). As the present paper has 
shown, the expected bidder's payment for an auction with a combination of the two highest bids depends on a 
kind of combination in general. The paper is organized as follows. In Section 2, the model is presented. In Section 
3, a theorem about bids for auctions with fuzzy values is proved and expected bidders' payments are studied.  

2. Model 

Suppose 1r   is a real number. Consider a function 

 1 1(1 ) for ,
( , , )

0 for ,

v r b r u b u
v b u

b u


      


 

where v , b , and u  are non-negative real numbers. Suppose that iv  is a value of bidder i , ib  is a bid of 

bidder i , maxi j i ju b , 1, ,i N  . Then ( , , )i i iv b u  is a payoff of bidder i . The auction is a first-price 

auction for 1r   and a second-price auction for r  . However, r   is not considered in this paper. For 

simplicity, the value of the function   is equal to 0 for i ib u  since all probability distributions that are 

considered in this paper are continuous. 

Let the values and the bids be fuzzy. Bidder i  knows the value iv  and does not know the values jv , j i , 

where iv  and jv  are fuzzy numbers. The values iv , 1, ,i N  , are realizations of fuzzy random variables 
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iV , 1, ,i N  . The fuzzy random variables 1, , NV V   are independent and have the same quantile function 

(see Shvedov (2016b)). The quantile function is known to all bidders. By ib  denote the bid of bidder i . 

A fuzzy number x  is a subset of 2 . The subset is determined by two functions :[0,1]Lx    and 

: [0,1]Rx   . The functions Lx  and Rx  are called left index and right index of the fuzzy number x , 

respectively. Both functions Lx  and Rx  are left-continuous. The function Lx  is monotone non-decreasing. 

The function Rx  is monotone non-increasing. Furthermore, (1) (1)L Rx x . The subset x  contains the points 

( , )   such that 0 1   and ( ) ( )L Rx x     for any [0,1]  . 

Let ( , , )P F  be a probability space. Suppose M  is a set, whose elements are compact subsets of 2 . It 

is known that M  is a metric space with respect to the Hausdorff distance. A function :X  M  is 

measurable if 1( )X M  F  for all Borel sets M M . Suppose that ( )X   is a fuzzy number for any 

  and supports of all these fuzzy numbers belong to a bounded subset of  . Then a measurable function 
X  is called a fuzzy random variable. 

Let X  be a fuzzy random variable. Suppose ( )X x   , Lx  and Rx  are left and right indices of the fuzzy 

number x , respectively. Consider functions ( , ) ( )L LX x    and  ( , ) ( )R RX x   . Then 

( ) :LX     and ( ) :RX    for any [0,1]  . It is proved by Shvedov (2016a) that ( )LX   and 

( )RX   are random variables for any [0,1]  . Sets of random variables ( )LX   and ( )RX  , [0,1]  , are 

called left index and right index of the fuzzy random variable X , respectively.  
The above definition of fuzzy random variables is a modification of a well-known definition of fuzzy random 

variables (Kwakernaak (1978), Kwakernaak (1979), Puri and Ralescu (1986)). The modification is necessary to 
define quantile function of a fuzzy random variable. 

By F  denote a distribution function of a random variable X . Assume that any distribution function that is 

considered in this paper is monotone increasing on a segment [0, ] , continuously differentiable inside [0, ] , 

(0) 0F  , and ( ) 1F   . Though, segments [0, ]  may be different for different functions F . Quantile 

function of the random variable X  is defined as 1( ) ( )q p F p , 0 1p  . Let :    be a Borel 

function. Suppose that expectation of the random variable ( )X  exists. Then (see Shvedov (2016b)) 
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1

0
( ( )) ( ( ))E X q p dp   .                            (2) 

Formula (2) is the foundation of further proof. 
In accordance with the definition from Shvedov (2016b), the quantile function of the fuzzy random variable 

V  is a family of fuzzy numbers ( )q p , 0 1p  . Quantile function of a fuzzy random variable possesses an 

advantage over distribution function of a fuzzy random variable since the quantile function is a function of a real 

argument, not a fuzzy argument. Impose a restriction to the quantile function of the fuzzy random variable V . 

Suppose that there is a fuzzy number a  such that V Va  . Then 

0( ) ( ) , 0 1q p q p a p    , 

where 0q  is quantile function of the random variable V . Let ( )La   and ( )Ra  , [0,1]  , be left index and 

right index of the fuzzy number a , respectively. Assume that (0) 0La  . Let ( )L
iV   and ( )R

iV  , [0,1]  , 

be left index and right index of the fuzzy random variable iV , respectively. It is possible to drop i  since the 

fuzzy random variables iV  have the same quantile function. Then quantile function of the random variable 

( )LV   has the form 0( ) ( )La q p  and quantile function of the random variable ( )RV   has the form 

0( ) ( )Ra q p . 

 A strategy is a function H  such that ( )H v b  , where v  is a value and b  is a bid. Impose a restriction 

to the function H . Suppose that there is a function :h     such that 

( ) ( ( )), ( ) ( ( ))L L R Rb h v b h v      

for all [0,1]  . In addition, suppose that the function h  is monotone increasing, continuously differentiable, 

and ( ) 0h x   as 0x . 

 Consider random variables 

( ) max ( ), ( ) max ( )L L R R
i j i j i j i jU V U V                           (3) 

for all 1, ,i N   and for all [0,1]  . Denote 

( , , , ) ( ( , , ( ( )))), ( , , , ) ( ( , , ( ( ))))L L R R
i i i iv b h E v b h U v b h E v b h U         ,                (4) 
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where v  and b  are non-negative real numbers, [0,1]  . Let ( )L
iv   and ( )R

iv  , [0,1]  , be left index 

and right index of the fuzzy number iv , respectively. Let ( )L
ib   and ( )R

ib  , [0,1]  , be left index and right 

index of the fuzzy number ib , respectively. 

 A strategy h  is called a symmetric pure Bayesian-Nash equilibrium if the following conditions hold: 

( )
( ( ), ( ( )), , ) max ( ( ), ( ), , )L

i

L L L L L L
i i i i i ib
v h v h v b h


        , 

( )
( ( ), ( ( )), , ) max ( ( ), ( ), , )R

i

R R R R R R
i i i i i ib
v h v h v b h


         

for all  1, ,i N  , for all iv , and for all [0,1]  . 

3. Main result 

Denote 
0 ( )

( 1)
0 0( 1)

0

1( ) ( ) , 0 1,
q p

r N
p r Nc q p F x dx p

p


     

where 0F  is the distribution function that corresponds to the quantile function 0q . 

Theorem. Let 0 ( )v q p a   be a value. Then the equilibrium strategy ( )b H v   has the form pb c a  . 

Remark. Suppose that ( ) ( ) 1L Ra a    for all [0,1]  . This means that we consider the crisp problem. 

Then the equilibrium strategy becomes 
( 1)

0

( )( )
( )

r N
v F xb v v dx
F v


 

   
 

 .                               (5) 

Formula (5) is a generalization of formula (1). For 2N  , formula (5) is derived by Plum (1992). However, the 
method of Plum (1992) is a more sophisticated method rather than our method. It seems that the method of Plum 
(1992) is suitable only for 2N  . 

Proof of the theorem. Denote ( )L
iU U  . Let Q  be quantile function of the random variable U ,   be 

distribution function of the random variable U , and u  be a realization of the random variable U . Denote 

 ( , , ) ( , , ( ))u b h E u b h U  . Suppose that a function h  satisfies the following property: 

( , ( ), ) max ( , , )bu h u h u b h    

for any value u . Let us show that 

0

1( ) ( )
( )

z
r

rh z z t dt
z

  
  .                               (6) 

Consider a function 
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 1 1( ) ( )s b Q h b  .                                  (7) 

Then the inequality ( ( ))b h Q p  is equivalent to the inequality ( )p s b . It follows from (2) and (4) that 

  ( ) 1 1

0
( , , ) (1 ) ( ( ))

s b
v b h v r b r h Q p dp      . 

We have 

  
( )

1 1

0

( , , ) (1 ) ( ( ))
s bd dv b h v r b r h Q p dp

db db
        

  1 1 1( ) (1 ) ( ( ( ))) ( ) ( )( )s b v r b r h Q s b r s b s b v b            . 

The first-order condition becomes 

1( ) ( ) ( ) 0v b s b r s b    . 

It follows from the symmetry of the bidders that 1( )v h b . Thus, 

1 1( ( ) ) ( ) ( ) 0h b b s b r s b     .                                (8) 

By using (7) we get 

  1 1( ) ( ) ( )s b h b h b
     .                                (9) 

Denote 1( )z h b . Differentiating 1( ( ))z h h z  we obtain 

 11 ( ( ))? )h h z h z
  . 

Thus, it follows from (9) that 

( )( )
( )
zs b

h z







 . 

Therefore, (8) becomes 

1( )( ( )) ( )
( )
zz h z r z

h z







   .                                 (10) 

The solution of the equation 

( ) ( )y f x y g x    

with an initial condition 0 0( )y x y  has the form 

 
0

( ) ( )
0( ) ( )

xG x G t

x
y x e y g t e dt   , 

where 

0

( ) ( )
x

x
G x f t dt  . 
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Hence, the solution of the equation (10) with the initial condition (0) 0h   is (6). 

Suppose that the function h  is defined by formula (6). Then 

  ( ( )) 1 1

0
( , ( ), ) ( ) (1 ) ( ( ))

s h z
v h z h v r h z r h Q p dp      . 

By (6) and (7) it follows that 

1

0

1( , ( ), ) ( ) ( ) ( )
( )

z
r

rv h z h z v r z z t dt
z

  
        

 
  

( )
( )1

0
0

1(1 ) ( ) ( )
( ( ))

Q p
z r

rr Q p t dt dp
Q p

  
      

  . 

By straightforward transformation one can get 

( , ( ), ) ( )( )d v h z h z v z
dz

    . 

This means that the function ( , ( ), )v h z h , which is considered as a function of the variable z , has a maximum 

at z v . Thus, the function h  is an equilibrium strategy for the crisp case.  

The random variables 1 ( ), , ( )L L
NV V   are independent and identically distributed. Denote by ( ; )LF z   

distribution function of the random variable ( )L
jV  . It follows from (\ref{a1a}) that 1( ) ( ; )L Nz F z    . By 

using (6) we get 
( )

( 1)
( 1)

0

1( ( )) ( ) ( ; )
( ( ); )

Lv
L L L r N

L L r Nh v v F t dt
F v



  
 


   .                   (11) 

By (11) it follows that 

0 ( 1)( ) ( )

0 0( 1)
0 0 0

1( ) ( ( )) ( ) ( )
( ( )) ( )

L r Na q p
L L L

r N L

tb h v a q p F dt
F q p a



  






 
    

 
  

0 ( )
( 1)

0 0( 1)
0

1( ) ( ) ( ) ( )
q p

L r N L
pr Na q p F u du a c

p
 



 
    

 
 , 

where 0 1  . Similarly, ( ) ( )R R
pb a c  . 

This completes the proof of the theorem. 

For fixed  v ,  ( )b H v   is a fuzzy number. Risk aversion of a bidder can be expressed by the method of 

defuzzification. 

Example 1. Suppose 1r  , 2N  , 0 ( )q p p . Then 0 ( )F x x  for 0 1x  . By definition  

0 ( )

0 0 0
0

1 1( ) ( ) ( ).
2

q p

pc q p F x dx q p
p

    
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By the Theorem 0.5b v  . Assume that defuzzification of the fuzzy number a  is carried out using the following 

formula 

 
1

0

( ) (1 ) ( ) , 0 1.L Ra a d          

A bidder’s level of risk aversion is determined by  . Suppose that ( ) 90 10La    , ( ) 110 10Ra    , 

1 0.76v a  , 2 0.72v a  . Then 1 0.38b a  , 2 0.36b a  . The first bidder is risk averse and chooses 1  ; his 

bid is equal to 36.1. The second bidder is not risk averse and chooses 0  ; her bid is equal to 37.8. Therefore, 
the bid depends on both the bidder’s value and the bidder’s level of risk aversion. 

Example 2. Using (5), we get (0) 0b  , ( ) 0b v   for 0v  . Let v  be the value of the bidder i . Then the 

payment of the bidder i  is 

1 1

0 for ,
( , )

( ) (1 ) ( ) for .
i

i
i i

U v
U v

r b v r b U U v
  


    

 

Let 1
0 0( ) ( )NG v F v   be distribution function of the random variable iU . Then the expected payment of the 

bidder i  is 

  0 0
0

1 1( , ) ( ) ( ) 1 ( ) ( )
v

iE U v b v G v b x dG x
r r

     
   .                     (12) 

For fixed 0v  , consider the function 

0 for 0,
( ) 0.5 for 0 ,

1 for .

x
G x x v

x v


  
 

 

Using the function ( )G x  instead of the function 0 ( )G x , from (12) and (5), we obtain 

  1 1 1 1( , ) ( ) 1 0.5 ( ) 0.5 1 1
2i rE U v b v b v v

r r r
              

    
. 

One can find a smooth and strictly increasing function 0 ( )G x  for which 0 (0) 0G  , 0 ( ) 1G v  , in such a way 

that the integral 00
( ) ( )

v
b x dG x  is arbitrary close to the integral 

0
( ) ( )

v
b x dG x . Thus, the expected payment 

 ( , )iE U v  in general depends on r . However, in the present case the expected payment is equal to $0.5 

v$ both for 1r   and r   . 

4. Conclusion 
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The paper presents one of the possible approaches to combined use of stochastic and fuzzy methods in the 
auction theory. A combination of stochastic and fuzzy methods has proved useful in modelling diverse types of 
economic problems. This combination enables to more subtly handle the information received. For example, 
Shvedov (2023) studied Cournot equilibrium under uncertain yield; the fuzzy random approach allows to get rid 
of the drawbacks that exist at the random approach. Fuzzy random variables can be used to study auctions with 
interdependent values. This may be a line of future research. 
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