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ABSTRACT
Vector Error Correction Models (VECM) have become a standard tool in empirical economics for analyzing 
nonstationary time series data because they integrate two key concepts in economics: equilibrium and dynamic 
adjustment in a single model. The current standard VECM procedure is limited to time series data with the same 
degree of integration, i.e., all I(1) variables. However, empirical studies often involve time series data with 
different de‐grees of integration, necessitating the simultaneous handling of I(1) and I(0) time series. This paper 
extends the standard VECM to accommodate mixed I(1) and I(0) variables. The conditions for the mixed VECM are 
derived, and consequently, we present a test and estimation for the mixed VECM.
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1. Introduction

Vector Error Correction Models (VECM), wherein certain linear combinations of nonstationary variables rep‐
resent stationary cointegration relations reϐlecting equilibrium conditions, stand as the most popular method for
modeling nonstationary macroeconomic variables. The formulation of a VECM is expressed as follows:

Δ𝑌𝑡 = 𝛼𝛽′𝑌𝑡−1 +
𝑝−1

෍
𝑙=1

Π𝑙Δ𝑌𝑡−𝑙 + 𝑈𝑡 (1)

Here𝑌𝑡 is an 𝑛 dimensional vector, 𝛼 and 𝛽 are 𝑛×ℎ dimensionalmatrices with rank ℎ. 𝛽′𝑌𝑡−1 = 0 represents ℎ
equilibrium relations. A deviation from the equilibrium𝛽′𝑌𝑡−1 ≠ 0will cause the system variable𝑌𝑡 to adjust byΔ𝑌𝑡 .
𝛼 is the adjustment coefϐicient that links the deviation from the equilibrium 𝛽′𝑌𝑡−1 ≠ 0 to the system adjustment
Δ𝑌𝑡 .

The standard method for building a VECM is as follows: (1) Run unit root tests for each time series in 𝑌𝑡 . (2) If
all of the series are I(1), use the Johansen test to determine the cointegration rank ℎ. (3) Use the Johansen procedure
to estimate the VECM. This standard approach works well if all 𝑌𝑡 components are 𝐼(1) series. In empirical studies,
however, not all components of 𝑌𝑡 are 𝐼(1) in all cases; some times 𝑌𝑡 may contain both 𝐼(1) and 𝐼(0) components.
In this case, the Johansen procedure cannot be used directly. Cointegration analysis with I(0) and I(1) variables
can be treated by ARDL bound test1. The bound test, however, is a single equation approach that can only test one
cointegration relation. A two‐step heuristic approach to modelling both I(1) and I(0) in a VECM is presented, for
example, in Hamilton (1994) for a fourvariable system. 𝑦1𝑡 is stationary. y2𝑡 = (𝑦2𝑡 , 𝑦3𝑡 , 𝑦4𝑡) the components are
each individually I(1). One cointegration relation among the three I(1) variables is concluded in the ϐirst step of
cointegration analysis, and then a VECM is presented as follows.

ቈ 𝑦1,𝑡
Δy2,𝑡

቉ =ቆ 𝛼1
𝛼2

ቇ + ൥ 𝜁(1)11 𝜁(1)12
𝜁(1)21 𝜁(1)22

൩ ቈ 𝑦1,𝑡−1
Δy2,𝑡−1

቉ + ൥ 𝜁(2)11 𝜁(2)12
𝜁(2)21 𝜁(2)22

൩ ቈ 𝑦1,𝑡−2
Δy2,𝑡−2

቉ + …

… + ൥ 𝜁(𝑝−1)11 𝜁(𝑝−1)12
𝜁(𝑝−1)21 𝜁(𝑝−1)22

൩ ቈ 𝑦1,𝑡−𝑝+1
Δy2,𝑡−𝑝+1

቉ + ൥ 𝜁(0)1
𝜁(0)2

൩ y2,𝑡−1 + ൥ 𝜖(0)1
𝜖(0)2

൩
(2)

where the (3 × 4) matrix ൥ 𝜁(0)1
𝜁(0)2

൩ is restricted to be 𝛼𝛽′ where 𝛼 is (4 × 1) and 𝛽 is (3 × 1).

In this paper, we will formalize the procedure proposed in Eq. (2) and present a systemic approach to Vector
Error Correction Models (VECM) with mixed I(1) and I(0) variables. It becomes evident that a VECM with mixed
I(1) and I(0) variables can be conceptualized as a cointegrated VECM with a set of restrictions in the cointegration
space, essentially representing a special case of the conventional cointegrated VECM. Consequently, the Johansen
test can be employed to determine the cointegration rank. Moreover, the Johansen procedure can be utilized to test
for the presence of I(0) components and to estimate the mixed VECM, as elaborated in the following sections.

2. VECM and the Underlying Process

Eq. (1) presented in the previous section can be reformulated as a vector autoregressive (VAR) model in level
of 𝑌𝑡 .

𝑌𝑡 =
𝑝

෍
𝑙=1

Φ𝑙𝑌𝑡−𝑙 + 𝜖𝑡 (3)

Assumption 1 The roots of |𝐼𝑛 −
𝑝
∑
𝑖=1

Φ𝑖𝑧𝑖| = 0 are either outside the unit circle |𝑧| = 1 or satisfying 𝑧 = 1.

Assumption 2 The vector error process 𝑈∞
𝑡=1 is 𝐼𝑁(0, Ω), Ω is positive deϔinite.

1See Pesaran et al. (2001) for more details
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Eq. (3) with Assumptions 1 and 2 is the same VAR of Eq. (3) and Assumption 1 considered in Johansen (1995)
with suppressed deterministic components to simplify the presentation. As a result, the Johansen procedure applies
to Eq. (1).

To elucidate our approach to amixed Vector Error CorrectionModel (VECM), we initially establish a connection
between a cointegrated VECM and an underlying stationary Vector Autoregressive (VAR) process, which will be de‐
ϐined later. We demonstrate that any cointegrated VECM can be viewed as generated from an underlying stationary
VAR, and conversely, any stationary VAR can generate a cointegrated VECM that satisϐies Assumptions 1 and 2. This
foundational principle empowers us to construct a VECM encompassing both I(1) and I(0) components, making it
possible to the application of the Johansen procedure. Under Assumption 1 it is shown in Johansen (1995) that 𝛽′𝑌𝑡
and 𝛽′⟂Δ𝑌𝑡 are stationary2. Deϐining Δ𝑍𝑡 = 𝛽′⟂Δ𝑌𝑡 and 𝑋𝑡 = 𝛽′𝑌𝑡 . We call ቈ Δ𝑍𝑡

𝑋𝑡
቉ an underlying process of VECM

(1) and show in the Appendix that the underlying process ቈ Δ𝑍𝑡
𝑋𝑡

቉ is a stationary VAR process.

Deϐinition 1 For a Eq. (1), ቈ Δ𝑍𝑡
𝑋𝑡

቉ with Δ𝑍𝑡 = 𝛽′⟂Δ𝑌𝑡 and 𝑋𝑡 = 𝛽′𝑌𝑡 is called an underlying process of Eq. (1).

The following Lemma establishes the connection between a cointegrated VECM and an underlying VAR.

Lemma 1 (VECM and an underlying VAR)

a) For a Eq. (1) satisfying Assumption 1, the underlying process ቈ Δ𝑍𝑡
𝑋𝑡

቉ is a stationary VAR process.

b) For an 𝑛 dimensional stationary VAR, denoting the ϔirst 𝑟 components by Δ𝑍 and the rest 𝑛 − 𝑟 components by 𝑋𝑡 .
Let𝑌𝑡 be a full rank linear transformation of ቈ 𝑍𝑡

𝑋𝑡
቉: 𝑌𝑡 = 𝐵 ቈ 𝑍𝑡

𝑋𝑡
቉. If𝐵 is unrestricted𝑌𝑡 is a VAR process satisfying

Assumption 1 with 𝑟 unit roots and 𝑛 − 𝑟 cointegration relations and it can be formulated as Eq. (1).

Corollary 1 The Johansen procedure is applicable to a VECM generated from an underlying stationary VAR.

According to Lemma 1, a cointegrated VECM is always created from an underlying stationary VAR, with the
number of unit roots in the VECM being the dimension of 𝑍𝑡 and the number of cointegration relations being the
dimension of𝑋𝑡 . How can𝑌𝑡 have I(0) components? The transformation between𝑌𝑡 and ቈ 𝑍𝑡

𝑋𝑡
቉ contains the answer

to this question. To demonstrate this we decompose 𝐵 into a 3 × 3 block:

𝑌𝑡 = ቎
𝐵11 𝐵12 𝐵13
𝐵21 𝐵22 𝐵23
𝐵31 𝐵32 𝐵33

቏ ቎
𝑍𝑡
𝑋1𝑡
𝑋2𝑡

቏ (4)

where the 𝑛 × 𝑛 matrix 𝐵 is separated into three blocks each with 𝑟, 𝑛 − 𝑟 − 𝑘, 𝑘 dimensions with 𝑟 + ℎ = 𝑛. 𝐵11
is 𝑟 × 𝑟, 𝐵22 is (𝑛 − 𝑟 − 𝑘) × (𝑛 − 𝑟 − 𝑘), 𝐵33 is 𝑘 × 𝑘, and other blocks are deϐined accordingly. If 𝐵11, 𝐵21, and
𝐵31 are nonzero, then all components of 𝑌𝑡 are I(1) because they are linear combinations of 𝑍𝑡 and 𝑋𝑡 and 𝑍𝑡 is I(1).
If 𝐵31 = 0, the last 𝑘 components of 𝑌𝑡 are only linear combinations of 𝑋𝑡 , implying these 𝑘 components of 𝑌𝑡 are
I(0). As a result, we have a VECM of 𝑌𝑡 with both I(1) and I(0) components. Clearly, 𝐵31 = 0 is both a necessary and
sufϐicient condition for a VECM of 𝑌𝑡 to contain a mix of I(1) and I(0) components. If 𝐵21 = 0 and 𝐵31 = 0 there will
be 𝑟 I(1) and ℎ I(0) components but no cointegration relations. The following lemma summarises the condition for
an I(0) and I(1) mixed VECM.

Lemma 2 𝐵31 = 0 is a necessary and sufϔicient condition for a VECM of 𝑌𝑡 to contain 𝑘 I(0) components.

There is a problem with applying Lemma 2 to determine a mixed VECM because 𝐵31 is a parameter of the
underlying process but not of the corresponding VECM that will be estimated. To turn the conditions in Lemma

2In Johansen (1995) the system variable is denoted 𝑋𝑡 , while in this paper 𝑌𝑡 is used instead.
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2 into a testable hypothesis we must investigate the implications of 𝐵31 = 0 on the parameters of Eq. (1) and
determine what restrictions on the parameters of Eq. (1) lead to 𝐵31 = 0.

To that end, we establish a relationship between the transformationmatrix 𝐵 and the parameter in Eq. (1). We
consider an underlying VAR of lag 2 without losing generality but simplifying the presentation.

቎
Δ𝑍𝑡
𝑋1𝑡
𝑋2𝑡

቏ = ൦
𝜃(1)11 𝜃(1)12 𝜃(1)13
𝜃(1)21 𝜃(1)22 𝜃(1)23
𝜃(1)31 𝜃(1)32 𝜃(1)33

൪ ቎
Δ𝑍𝑡−1
𝑋1𝑡−1
𝑋2𝑡−1

቏ + ൦
𝜃(2)11 𝜃(2)12 𝜃(2)13
𝜃(2)21 𝜃(2)22 𝜃(2)23
𝜃(2)31 𝜃(2)32 𝜃(2)33

൪ ቎
Δ𝑍𝑡−2
𝑋1𝑡−2
𝑋2𝑡−2

቏ + ቎
𝑒𝑧𝑡
𝑒𝑥1𝑡
𝑒𝑥2𝑡

቏ (5)

To keep the VECM’s lag length at one 𝜃(2)11 , 𝜃(2)21 , and 𝜃(2)31 are assumed to be zero. Rewriting the underlying Eq.
(5) in error correction form we obtain:

቎
Δ𝑍𝑡
Δ𝑋1𝑡
Δ𝑋2𝑡

቏ = ൦
0 𝜃(1)12 + 𝜃(2)12 𝜃(1)13 + 𝜃(2)13
0 𝜃(1)22 + 𝜃(2)22 − 𝐼 𝜃(1)23 + 𝜃(2)23
0 𝜃(1)32 + 𝜃(2)32 𝜃(1)33 + 𝜃(2)33 − 𝐼

൪ ቎
𝑍𝑡−1
𝑋1𝑡−1
𝑋2𝑡−1

቏+൦
𝜃(1)11 −𝜃(2)12 −𝜃(2)13
𝜃(1)21 −𝜃(2)22 −𝜃(2)23
𝜃(1)31 −𝜃(2)32 −𝜃(2)33

൪ ቎
Δ𝑍𝑡−1
Δ𝑋1𝑡−1
Δ𝑋2𝑡−1

቏+቎
𝑒𝑧𝑡
𝑒𝑥1𝑡
𝑒𝑥2𝑡

቏ (6)

Transforming the underling variable ቈ 𝑍𝑡
𝑋𝑡

቉ to 𝑌𝑡 we have:

Δ𝑌𝑡

= ቎
𝐵11 𝐵12 𝐵13
𝐵21 𝐵22 𝐵23
𝐵31 𝐵32 𝐵33

቏ ቎
Δ𝑍𝑡−1
Δ𝑋1𝑡−1
Δ𝑋2𝑡−1

቏

= ቎
𝐵11 𝐵12 𝐵13
𝐵21 𝐵22 𝐵23
𝐵31 𝐵32 𝐵33

቏ ൦
0 𝜃(1)12 + 𝜃(2)12 𝜃(1)13 + 𝜃(2)13
0 𝜃(1)22 + 𝜃(2)22 − 𝐼 𝜃(1)23 + 𝜃(2)23
0 𝜃(1)32 + 𝜃(2)32 𝜃(1)33 + 𝜃(2)33 − 𝐼

൪ ቎
𝐵11 𝐵12 𝐵13
𝐵21 𝐵22 𝐵23
𝐵31 𝐵32 𝐵33

቏

−1

቎
𝐵11 𝐵12 𝐵13
𝐵21 𝐵22 𝐵23
𝐵31 𝐵32 𝐵33

቏ ቎
𝑍𝑡−1
𝑋1𝑡−1
𝑋2𝑡−1

቏

+ ቎
𝐵11 𝐵12 𝐵13
𝐵21 𝐵22 𝐵23
𝐵31 𝐵32 𝐵33

቏ ൦
𝜃(1)11 −𝜃(2)12 −𝜃(2)13
𝜃(1)21 −𝜃(2)22 −𝜃(2)23
𝜃(1)31 −𝜃(2)32 −𝜃(2)33

൪ ቎
𝐵11 𝐵12 𝐵13
𝐵21 𝐵22 𝐵23
𝐵31 𝐵32 𝐵33

቏

−1

቎
𝐵11 𝐵12 𝐵13
𝐵21 𝐵22 𝐵23
𝐵31 𝐵32 𝐵33

቏ ቎
Δ𝑍𝑡−1
Δ𝑋1𝑡−1
Δ𝑋2𝑡−1

቏ + ቎
𝑢1𝑡
𝑢2𝑡
𝑢3𝑡

቏

= ቎
𝐵11 𝐵12 𝐵13
𝐵21 𝐵22 𝐵23
𝐵31 𝐵32 𝐵33

቏ ൦
𝜃(1)12 + 𝜃(2)12 𝜃(1)13 + 𝜃(2)13

𝜃(1)22 + 𝜃(2)22 − 𝐼 𝜃(1)23 + 𝜃(2)23
𝜃(1)32 + 𝜃(2)32 𝜃(1)33 + 𝜃(2)33 − 𝐼

൪ ቈ 𝐵21 𝐵22 𝐵23

𝐵31 𝐵32 𝐵33 ቉ 𝑌𝑡−1

+ ቎
𝐵11 𝐵12 𝐵13
𝐵21 𝐵22 𝐵23
𝐵31 𝐵32 𝐵33

቏ ൦
𝜃(1)11 −𝜃(2)12 −𝜃(2)13
𝜃(1)21 −𝜃(2)22 −𝜃(2)23
𝜃(1)31 −𝜃(2)32 −𝜃(2)33

൪ ቎
𝐵11 𝐵12 𝐵13
𝐵21 𝐵22 𝐵23

𝐵31 𝐵32 𝐵33
቏ Δ𝑌𝑡−1 + ቎

𝑢1𝑡
𝑢2𝑡
𝑢3𝑡

቏

where

቎
𝐵11 𝐵12 𝐵13
𝐵21 𝐵22 𝐵23
𝐵31 𝐵32 𝐵33

቏

−1

= ቎
𝐵11 𝐵12 𝐵13
𝐵21 𝐵22 𝐵23

𝐵31 𝐵32 𝐵33
቏ (7)

We have:

𝛼 = ቎
𝐵11 𝐵12 𝐵13
𝐵21 𝐵22 𝐵23
𝐵31 𝐵32 𝐵33

቏ ൦
𝜃(1)12 + 𝜃(2)12 𝜃(1)13 + 𝜃(2)13
𝜃(1)22 + 𝜃(2)22 − 𝐼 𝜃(1)23 + 𝜃(2)23
𝜃(1)32 + 𝜃(2)32 𝜃(1)33 + 𝜃(2)33 − 𝐼

൪ (8)

𝛽′ = ቈ 𝐵21 𝐵22 𝐵23

𝐵31 𝐵32 𝐵33 ቉ (9)

What are the restrictions on 𝛽 that imply 𝐵31 = 0? It is well known that 𝛽 is identiϐied up to a full column rank
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transformation. According to Lemma 7.1 in Johansen (1995), the number of parameters in 𝛼𝛽′ with unconstrained
𝛼 and 𝛽 is 𝑛(𝑛− 𝑟)+ 𝑟(𝑛− 𝑟). To ϐind binding restrictions on 𝛽 wemust ϐirst make 𝛽 exactly identiϐiable otherwise
parameter restrictions and identiϐication restrictions will be mixed up. Let 𝛽 be identiϐied in the following form.

𝛽′ = ቈ 𝐵21 𝐼 0
𝐵31 0 𝐼 ቉. By this identiϐication scheme, all elements in 𝛼, 𝐵21, and 𝐵31 are free parameters, and the

number of these free parameters are 𝑛(𝑛 − 𝑟) + 𝑟(𝑛 − 𝑟).

Since 𝛽 has full column rank, this identiϐication can be done by premultiplying 𝛽′ by ቈ 𝐵22 𝐵23

𝐵32 𝐵33 ቉
−1
.

Identifying 𝛽′ in this way is equivalent to make a full rank transformation of the underlying process of 𝑋𝑡:

𝑌 = ቎
𝐵11 𝐵12 𝐵13
𝐵21 𝐵22 𝐵23
𝐵31 𝐵32 𝐵33

቏ ቎
𝐼 0 0
0 𝑇22 𝑇23
0 𝑇32 𝑇33

቏
ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ

𝐵∗

቎
𝐼 0 0
0 𝑇22 𝑇23
0 𝑇32 𝑇33

቏

−1

቎
𝑍𝑡−1
𝑋1𝑡−1
𝑋2𝑡−1

቏
ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇥ

(𝑌′𝑡 ,𝑋∗
′

1𝑡 ,𝑋∗
′

2𝑡)′

(10)

such that the inverse of 𝐵∗ has the following form:

𝐵∗ = ቎
𝐵11 𝐵∗

12 𝐵∗
13

𝐵21 𝐵∗
22 𝐵∗

23
𝐵31 𝐵∗

32 𝐵∗
33

቏ = ቎
𝐵11∗ 𝐵12∗ 𝐵13∗
𝐵21∗ 𝐼 0
𝐵31∗ 0 𝐼

቏

−1

(11)

What are the constrains on this identiϐied 𝛽 that implies 𝐵31 = 0? Applying the following formula of partial
matrix inverse

ቈ A B
C D ቉

−1
= ቈ A−1 + A−1B(D− CA−1B)−1CA−1 A−1B(D− CA−1B)−1

(D− CA−1B)−1𝐶A−1 (D− CA−1B)−1 ቉ (12)

to Eq. (11) and taking ቈ 𝐼 0
0 𝐼 ቉ as the A block, and ቈ 𝐵21∗

𝐵31∗ ቉ as the B block, we have

𝐵31 = 𝐵31∗ ቈ𝐵11∗ − [𝐵12∗, 𝐵13∗] ቈ 𝐵21∗

𝐵31∗ ቉቉
−1

(13)

and conclude 𝐵31∗ = 0 implies 𝐵31 = 0 and vice versa. Inserting this restriction into 𝛽 we have:

𝛽′ = ቈ 𝐵21∗ 𝐼 0
0 0 𝐼 ቉ (14)

If a 𝑘 dimensional I(0) component exists in 𝑌𝑡 , Eq. (14) implies that the (𝑛 − 𝑟)‐dimensional I(0) space can be
decomposed into two orthogonal subspaces: a 𝑘‐dimensional I(0) subspace containing the 𝑘 I(0) variables and an
(𝑛 − 𝑟 − 𝑘)‐dimensional cointegration space containing linear combinations of the (𝑛 − 𝑘) I(1) variables. The 𝑘
I(0) components do not enter the cointegration space and the cointegrating error terms do not mix with the 𝑘 I(0)
components. We notice that this result keeps unchanged if the 𝑘‐dimensional I(0) subspace and the (𝑛 − 𝑟 − 𝑘)‐
dimensional cointegrating space are subject to a full rank transformation respectively. We summarise this result in
the following lemma.

Lemma 3 The necessary and sufϔicient condition for a VECM to contain 𝑘 I(0) variables is the cointegrating matrix 𝛽
cab be written as: 𝛽′ = ቈ 𝐵21 𝐵22 0

0 0 𝐵33 ቉ .

The justiϐication for the two‐step method outlined in Eq. (2) is, in part, supported by Lemma 3. It establishes
that the I(0) components space and the cointegration space are orthogonal, suggesting that only the three I(1) com‐
ponents are actively involved in the cointegration relations. This justiϐication stems from the fact that the I(0) com‐
ponents are generally not weakly exogenous for the conditional process of the I(1) components. Valid inferences
based on a partial system can be drawn only when the conditioning variables are weakly exogenous for the parame‐
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ters of the partial system3. Tomaintainweak exogeneity, the cointegration relationmust not inϐluence the dynamics
of the I(0) components, implying 𝜁(0)1 = 0 in Eq. (2)4.

3. Generating and Testing mixed VECMs

This section uses two examples to show that 1) a data generating process that satisϐies the condition in Lemma
2, 𝐵31 = 0will generate VECMwithmixed I(0) and I(1) variables, and 2) a data generating process that satisϐies the
condition in Lemma 3, 𝛽′ = ቈ 𝐵21 𝐵22 0

0 0 𝐵33 ቉will also generate a VECM with I(0) and I(0) components.

3.1. Data Generating Process of Mixed VECMs

Example 1

቎
Δ𝑍𝑡
𝑋1𝑡
𝑋2𝑡

቏ = ൦
𝜃(1)11 𝜃(1)12 𝜃(1)13
𝜃(1)21 𝜃(1)22 𝜃(1)23
𝜃(1)31 𝜃(1)32 𝜃(1)33

൪ ቎
Δ𝑍𝑡−1
𝑋1𝑡−1
𝑋2𝑡−1

቏ + ൦
𝜃(2)11 𝜃(2)12 𝜃(2)13
𝜃(2)21 𝜃(2)22 𝜃(2)23
𝜃(2)31 𝜃(2)32 𝜃(2)33

൪ ቎
Δ𝑍𝑡−2
𝑋1𝑡−2
𝑋2𝑡−2

቏ + ቎
𝑒𝑧𝑡
𝑒𝑥1𝑡
𝑒𝑥2𝑡

቏ (15)

𝑌𝑡 = 𝐵 ቎
𝑍𝑡
𝑋1𝑡
𝑋2𝑡

቏ (16)

𝜃(1)

-0.06 -0.52 -0.05 0.15 -0.05 -0.1
-0.52 0.25 0.28 -0.07 0.04 0.03
-0.05 0.28 -0.33 -0.07 0.29 -0.2
0.15 -0.07 -0.07 -0.44 0.15 -0.05
-0.05 0.04 0.29 0.15 -0.27 -0.44
-0.1 0.03 -0.2 -0.05 -0.44 0.26

𝜃(2)

0 0 0.07 0.09 0 0.04
0 0 0.01 0.06 -0.04 0.01
0 0 0.03 0.04 0.08 0.1
0 0 0.04 0.01 0.04 0.06
0 0 0.08 0.04 0 0.07
0 0 0.01 0.06 0.07 0.05

𝐵
-0.6 1.5 0.42 0.55 0.35 -1.83
0.32 0.15 -0.23 -0.5 -0.66 -0.35
1.87 -2.61 -1.6 -0.37 -0.05 1.22
-1.77 -0.11 0.73 0.2 -0.5 0.34
0 0 0.3 -0.6 0.37 0.38
0 0 -0.4 0.5 0.23 -0.79

Figure 1 shows one realisation of the simulated data. It is evident from the graphs in Figure 1 that there are 4
I(1) and 2 I(0) variables.

3See Engle et al. (1983) for a more detailed explanation.
4For further details, refer to Harbo et al. (1998) and Moral‐Benito and Servén (2015).
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Figure 1. Time series generated from example 1.

Example 2 The is an example in which data are generated from a VECM with restricted 𝛽 such that the last two com-
ponents are I(0).

Δ𝑌𝑡 = 𝐶 + 𝛼𝛽′𝑌𝑡−1 +ΨΔ𝑌𝑡−1 + 𝜖𝑡 𝜖𝑡 ∼ 𝐼𝑁(0, Ω)

𝛼 𝛽 Ψ
-0.09 0.54 6.05 14.74 1 1 0 0 -1.11 0.71 -0.54 0.04 7.42 -9.35
0.21 0.55 2.78 7.64 -1.34 -3.8 0 0 -0.52 0.4 -0.26 -0.13 4.55 -5.86
0.3 -0.23 -0.11 -1.32 -0.27 0.59 0 0 0.73 -0.28 0.41 -0.33 -4.16 5.16
0.13 0.32 5.32 12.59 -0.29 0.89 0 0 -0.38 0.38 -0.44 -0.12 5.96 -7.33
-0.13 -0.06 0.12 -1.65 0 0 -2.13 -0.21 0.12 -0.13 0.06 0.05 -1.21 1.49
-0.19 0.06 -0.9 -3.39 0 0 1 1 0.26 -0.07 0.22 -0.04 -2.76 3.26

One realization of the simulated data is depicted in Figure 2. The graphs in Figure 2 show clearly that there are
4 I(1) and 2 I(0) variables.

3.2. Testing Mixed VECMs and Parameter Estimation

As discussed in the previous section, VECMwith mixed I(0) and I(1) variables can be seen as a special case of a
conventional cointegratedVECMwhere the cointegrating vectors subject to a set of linear restrictions. Therefore the
standard Johansen procedure is applicable. We can apply the Johansen procedure to determine the cointegration
rank, to test the presence of I(0) variables in the system, and to estimate the parameters of the mixed VECM.

The restrictions on the cointegrating vectors 𝛽 that leads to a mixed VECM are linear restrictions on 𝛽. Follow‐
ing Boswijk and Doornik (2004) linear restrictions can be formulated in the following form.

vec(𝛼′) = 𝐺𝜓, vec𝛽 = 𝐻𝜙 + ℎ0 (17)
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Figure 2. Time series generated from example 2.

Boswijk and Doornik (2004) propose the following iteration process to calculate the constrained parameter
and thus to test the hypothesis related to the constrains.

�̃�(𝜙, Ω) = [𝐺′(Ω−1 ⊗𝛽′𝑆11𝛽)𝐺]−1(Ω−1 ⊗𝛽′𝑆11)vec( ̂Π′
𝐿𝑆)

�̃�(𝜓, Ω) = [𝐻′(𝛼′Ω−1𝛼 ⊗ 𝑆11𝛽)𝐻]−1𝐻′(𝛼′Ω−1 ⊗𝑆11)ቂvec൫ ̂Π′
𝐿𝑆൯ − (𝛼 ⊗ 𝐼𝑝1)ℎ0ቃ

Ω̃(𝜓, 𝜙) = 𝑆00 − 𝑆01𝛽𝛼′ − 𝛼𝛽′𝑆10 + 𝛼𝛽′𝑆11𝛽𝛼′

Starting fromaset of initial values (𝜓0, 𝜙0, Ω0), the iterations thenbecome �̃�𝑗 = �̃�(𝜓𝑗−1, Ω𝑗−1), �̃�𝑗 = �̃�(𝜙𝑗 , Ω𝑗−1),
Ω̃𝑗 = Ω̃(𝜙𝑗 , Ω𝑗). The iteration procedure stops when the changes in estimated values between two steps are below
a prescribed threshold. 𝑆01, 𝑆11, and 𝑆00 are the cross products of the two auxiliary regressions in the Johansen
procedure. We use this procedure to test the presence of a mixed VECM.

According to Boswijk and Doornik (2004), the following likelihood ratio is asymptotically 𝜒2 with degree of
freedom 𝑟𝑘

𝐿𝑅 = 𝑇 ቎log |Ω̃| − log |𝑆00| −
𝑟

෍
𝑖=1

log ൫1 − �̂�𝑖൯቏
𝑑−→ 𝜒2(𝑟𝑘), (18)

where Ω̃ is the constrained estimate obtained from the iteration above and log |𝑆00| −∑𝑟
𝑖=1 log(1− �̂�𝑖) is the uncon‐

strained estimate from the Johansen procedure.
Examples (continue)

Applying Johansen’s test to the data generated in Example 1, we obtain the following result.

Johansen test of Example 1
teststatistic critical_value
crk <= 0 | 1287.128961 40.19
crk <= 1 | 631.081580 34.03
crk <= 2 | 145.332672 27.80
crk <= 3 | 113.392495 21.49
crk <= 4 | 8.438725 15.02
crk <= 5 | 1.121140 8.19
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It is to note that the output of Johansen’s test above indicates the dimension of the I(0) space. It is the sum
of the independent cointegration relations and the number of I(0) components in the system. For data generated
from the parameters in Example 1, we run likelihood ratio tests of one, two three I(0) components, respectively. The
corresponding p‐value are 0.43, 0.34, and 0.0. We conclude there are two I(0) components in the system. It follows
that there are two independent cointegration relations among the 4 I(1) variables.

For the data generated from the parameters in Example 2, we have similar results.

Johansen test of Example 2
teststatistic critical_value
crk <= 0 | 1022.555928 40.19
crk <= 1 | 227.575481 34.03
crk <= 2 | 67.163218 27.80
crk <= 3 | 46.358663 21.49
crk <= 4 | 7.232841 15.02
crk <= 5 | 2.674875 8.19

Johansen’s test results show that the dimension of the I(0) space is 4. The p‐values of the likelihood ratio tests of
one, two, and three I(0) components are 0.62, 0.48, and 0.0 respectively. We conclude there are two I(0) components
in 𝑌𝑡 and two independent cointegration relations among the 4 I(1) variables in the system.

4. An Illustrative Empirical Application

In this section, we provide an example of how a mixed VECM is used in an empirical investigation. We are
interested in determining how the unemployment rate (𝑈𝑡), productivity (𝑦𝑛𝑡), and capacity utilisation (𝑉𝑐𝑡) affect
the real wage (𝑟𝑤𝑡) in Germany.

The information comes from FRED Economic Data and OECD Statistics. The data spans the quarters of 1990
Q1 and 2021 Q2. Figure 3 contains plots of the time series.
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Figure 3. Time series used in the empirical example.
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variable Trnasformation Description of the untransformed series
w log(DEULCWRMN01IXOBQ) German wage index, source: FRED

‐ log(DEUCPIALLMINMEIQ) German CPI, source: FRED
U_l LMUNRRTTDEM156SQ German unemployment rate: FRED
V_c log(BSCURT02DEQ160S) German capacity utilization rate, source: OECD
yn DEURGDPHq Germany, productivity index, source: FRED

Unit root tests of the 4 time series indicate that 𝑟𝑤, 𝑈𝑙 and 𝑦𝑛 are I(1) while 𝑉𝑐 is I(0). Based on BIC criterion,
we specify a VAR(2) for the 4 variables in level. Johansen’s test gives the following results.

teststatistic critical_value
crk <= 0 | 31.785720 27.80
crk <= 1 | 23.184527 21.49
crk <= 2 | 7.320134 15.02
crk <= 3 | 1.031860 8.19

The output above indicates that I(0) space has a dimension of 2. P‐values of the likelihood ratio tests of one I(0)
components is 8.2%. We conclude that there is one I(0) component and one cointegration relation in the system.
The estimated cointegrating vector 𝛽 = (1, 0.002, −1.20, 0) can be reformulated as a long‐run real wage equation.

log𝑤𝑡 = −0.002𝑈𝑙,𝑡 + 1.20 log𝑦𝑛𝑡 (19)

This long‐term equation shows that productivity has a positive effect on real wages while unemployment has
a negative effect. Real wages have an elasticity of 1.2 to productivity, whichmeans real wages will increase 1.2% for
every 1% increase in productivity. The elastic response of the real wage to productive growth implies that the wage
share in total output is increasing, which contradicts Bowley’s law.5 In contrast, the wage share is ”relatively stable”
over the long run. Therefore we test the unit elasticity hypothesis. 𝐻0 ∶ 𝛽3 = 1 𝐻1 ∶ 𝛽3 > 1. The likelihood ratio
test has a p‐value of 4%. The null hypothesis is rejected at the signiϐicance level of 5% but not rejected a the level of
1%. Because, despite heated debates, Bowley’s is a reliable long‐run benchmark (See KRäMER (2011) and Carter
(2007) for more detailed discussions.), we choose the signiϐicance level at 1% and do not reject the null hypothesis
that the elasticity coefϐicient is 1. As a result, we have a long run real wage equation:

log𝑤𝑡 = −0.007𝑈𝑙,𝑡 + log𝑦𝑛𝑡 (20)

This equation says if the unemployment rate increases by 1%, the real wage will decrease by 0.7%. A deviation
from this long run relation is measure by the error term 𝛽′𝑌𝑡−1 which is depicted in the following diagram.

The plot in Figure 4 shows the real wage can deviate from the long run equilibrium level by about ±5%. The
cointegration relationship also shows that the rate of capacity utilisation has no long‐run effect on the real wage.
However, itmayhave a short‐term impact on the realwage. To evaluate the short rundynamics, we calculate impulse
response functions of the mixed VECM shown in Figure 5.

In this set of impulse response functions, the Cholezky decomposition is used in the order (𝑦𝑛, 𝑈𝑙, 𝑟𝑤, 𝑉𝑐). The
shocks are one unit of the corresponding variables. A positive productivity shock, according to the impulse response
function, reduces unemployment rate, raises the real wage, and increases capacity utilisation. A one standard de‐
viation unemployment shock has no effect on productivity, but it lowers the real wage and temporarily reduces
capacity utilisation.

5. Concluding Remarks

In this paper, we extend the conventional cointegrated VECM to mixed cointegrated VECMs that can accom‐
modate I(0) and I(1) variables. A testable necessary and sufϐicient condition for a mixed cointegrated VECM is

5See Hamilton (1994) for more details.
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Figure 5. Time series generated from example.

provided. We show that a mixed cointegrated VECM is a special case of a conventional cointegrated VECM. As a re‐
sult, Johansen’s test can be used to test the cointegration rank as well as the constraints on the cointegrating vectors
that make a VECM a mixed cointegrated VECM. Practical implication of the results in this paper is that the exiting
econometric software packages such as R, RATS, and EVIEWS that can be used to test restrictions on 𝛽 in a VECM
can be directly use to test a mixed VECM and estimate the parameters of the mixed VECM.
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Appendix

Proof of Lemma 1 a)
To simplify the presentation, the lag length 𝑝 is set to 2 and the deterministic components are suppressed in

the following proof without loss of generality. This results in the following VECM

Δ𝑌𝑡 = 𝛼𝛽′𝑌𝑡−1 + ΘΔ𝑦𝑡−1 + 𝑢𝑡

Premultiply the equation above by ቈ 𝛽′⟂
𝛽′ ቉we obtain:

ቈ 𝛽′⟂Δ𝑌𝑡
𝛽′𝑌𝑡 − 𝛽′𝑌𝑡−1

቉ = ቈ 𝛽′⟂
𝛽′ ቉ 𝛼𝛽′𝑌𝑡−1 + ቈ 𝛽′⟂

𝛽′ ቉ Θ ቈ 𝛽′⟂
𝛽′ ቉

−1
ቈ 𝛽′⟂Δ𝑌𝑡−1
𝛽′𝑌𝑡−1 − 𝛽′𝑌𝑡−2

቉ + ቈ 𝛽′⟂
𝛽′ ቉ 𝑢𝑡

ቈ 𝛽′⟂Δ𝑌𝑡
𝛽′𝑌𝑡

቉ = ቈ 𝛽′⟂
𝛽′ ቉ ൥ൣ 0 𝛼 ൧ ቈ 0 0

0 𝐼 ቉ + Θ ቈ 𝛽′⟂
𝛽′ ቉

−1
൩ ቈ 𝛽′⟂Δ𝑌𝑡−1

𝛽′𝑌𝑡−1
቉

+ ቈ 𝛽′⟂
𝛽′ ቉ Θ ቈ 𝛽′⟂

𝛽′ ቉
−1

ቈ 0
𝛽′𝑌𝑡−2

቉ + ቈ 𝛽′⟂
𝛽′ ቉ 𝑢𝑡

Replacing 𝛽⟂Δ𝑌𝑡 and 𝛽′𝑌𝑡 by Δ𝑍𝑡 and 𝑋𝑡 respectively, we obtain

ቈ Δ𝑍𝑡
𝑋𝑡

቉ = ቈ 𝛽′⟂
𝛽′ ቉ ൥ൣ 0 𝛼 ൧ ቈ 0 0

0 𝐼 ቉ + Θ ቈ 𝛽′⟂
𝛽′ ቉

−1
൩ ቈ Δ𝑍𝑡−1

𝑋𝑡−1
቉

+ ቈ 𝛽′⟂
𝛽′ ቉ Θ ቈ 𝛽′⟂

𝛽′ ቉
−1

ቈ 0 0
0 𝐼 ቉ ቈ Δ𝑍𝑡−2

𝑋𝑡−2
቉ + ቈ 𝛽′⟂

𝛽′ ቉ 𝑢𝑡

The equation above shows the underlying process is a VAR process. Following Theorem 4.2 in Johansen (1995)
Δ𝑍 = 𝛽⟂Δ𝑌𝑡 and 𝑋 = 𝛽′𝑌𝑡 are stationary, hence the underlying process is a stationary VAR process. This proves
Lemma 1 a).

To prove Lemma 1 b) we consider the following stationary VAR. Again, we choose 𝑝 = 2 and suppress the
deterministic components.

ቈ Δ𝑍𝑡
𝑋𝑡

቉ = 𝜁1 ቈ
Δ𝑍𝑡−1
𝑋𝑡−1

቉ + 𝜁2 ቈ
Δ𝑍𝑡−2
𝑋𝑡−2

቉ + 𝑣𝑡 (A1)

Tokeep the lag lengthofVECMbeing1,weassume inaddition the coefϐicient ofΔ𝑍𝑡−2 is zero: 𝜁1= ൥ 𝜁(1)11 𝜁(1)12
𝜁(1)21 𝜁(1)22

൩

𝜁2 = ൥ 0 𝜁(2)12
0 𝜁(2)22

൩ Rearrange Eq. (A1):

ቈ Δ𝑍𝑡
Δ𝑋𝑡

቉ = ൥ 0 𝜁(1)12
0 𝜁(1)22 + 𝜁(2)22 − 𝐼 ൩ ቈ 𝑍𝑡−1

𝑋𝑡−1
቉ + ൥ 𝜁(1)11 𝜁(2)12

𝜁(1)21 −𝜁(2)22
൩ ቈ Δ𝑍𝑡−1

Δ𝑋𝑡−1
቉ + 𝑣𝑡 (A2)
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The stationarity assumption of ቈ Δ𝑍𝑡
𝑋𝑡

቉ implies the roots of the following characteristic polynomial equation

ቚ𝐼 − 𝜁1𝑧 − 𝜁2𝑧2ቚ = 0 (A3)

lie outside the unit circle |𝑧| = 1. Using lag operator the stationary Eq. (A1) can be written as:

(𝐼 − 𝜁1𝐿 − 𝜁2𝐿2) ቈ
Δ𝑍𝑡
𝑋𝑡

቉ = 0

Inserting ቈ Δ𝑍𝑡
𝑋𝑡

቉ = ቈ 𝐼 − 𝐿 0
0 𝐼 ቉ ቈ 𝑍𝑡

𝑋𝑡
቉ into the equation above we have

(𝐼 − 𝜁1𝐿 − 𝜁2𝐿2) ቈ
𝐼 − 𝐿 0
0 𝐼 ቉ ቈ 𝑍𝑡

𝑋𝑡
቉ = 0 (A4)

Obviously

ቤ(𝐼 − 𝜁1𝑧 − 𝜁2𝑧2) ቈ
𝐼(1 − 𝑧) 0

0 𝐼 ቉ቤ = ቚ(𝐼 − 𝜁1𝑧 − 𝜁2𝑧2)ቚ ቤቈ
𝐼(1 − 𝑧) 0

0 𝐼 ቉ቤ = 0

has only roots outside the unit circle and unit roots. Hence the VAR of ቈ 𝑍𝑡
𝑋𝑡

቉ satisϐies Assumption 1. Next we show a
full rank transformation of a VARprocesswill not change the roots of the characteristic polynomials of the respective
VAR processes. For a VAR process

𝑋𝑡 =
𝑝

෍
𝑙=1

Φ𝑙𝑋𝑡−𝑙 + 𝜖𝑡 (A5)

the roots the characteristic polynomial of Eq. (A5) is deϐined by the following equation

|𝐼𝑛 −
𝑝

෍
𝑖=1

Φ𝑖𝑧𝑖| = 0 (A6)

For a full rank transformation of𝑊𝑡 = 𝐵𝑋𝑡 we have

𝑊𝑡 =
𝑝

෍
𝑙=1

𝐵Φ𝑙𝐵−1𝑊𝑡−𝑙 + 𝐵𝜖𝑡 (A7)

and its roots is deϐined by

|𝐼𝑛 −
𝑝

෍
𝑖=1

𝐵Φ𝑖𝐵−1𝑧𝑖| = |𝐵(𝐼𝑛 −
𝑝

෍
𝑖=1

Φ𝑖𝑧𝑖)𝐵−1| = 0 (A8)

Because 𝐵 has full rank, the roots of equation (A8) is identical to the roots of equation (A6). Using this results and
that 𝑌𝑡 is a full rank transformation of ቈ 𝑍𝑡

𝑋𝑡
቉, we conclude the VAR of 𝑌𝑡 satisϐies Assumption 1. This proves Lemma

1 b). □
Proof of Lemma 2

According to the relation between 𝑌𝑡 and the underlying process in Eq. (4), if 𝐵31 = 0, the last 𝑘 components
of 𝑌𝑡 are linear combinations of I(0) variables, these 𝑘 components are I(0). This proves the sufϐiciency. If the last 𝑘
components of 𝑌𝑡 are 𝐼(0), the last component of 𝑌𝑡 is I(0). From Eq. (4) we have
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𝑌𝑛,𝑡 =
𝑟

෍
𝑖=1

𝑏𝑛,𝑖𝑍𝑖,𝑡 +
𝑛−𝑟

෍
𝑗=1

𝑏𝑛,𝑗+𝑟𝑋𝑗,𝑡 (A9)

Because 𝑍𝑖,𝑡 for 𝑖 = 1, 2, ..., 𝑟 are independent 𝐼(1) variables, ∑𝑟
𝑖=1 𝑏𝑛,𝑖𝑍𝑖,𝑡 is an I(1) variable unless 𝑏𝑛,𝑖 = 0 for

𝑖 = 1, 2, ..., 𝑟. Because 𝑌𝑛,𝑡 is I(0) by assumption it follows 𝑏𝑛,𝑖 = 0 for 𝑖 = 1, 2, ..., 𝑟, i.e. the last row in 𝐵31 is zero. In
the same way we can prove each row in 𝐵31 is zero. This proves the necessity. □
Proof of Lemma 3

To prove the sufϐiciency, we can premultiply 𝛽′ = ቈ 𝐵21 𝐵22 0
0 0 𝐵33 ቉ by ቂ 𝐵22 0

0 𝐵33 ቃ
−1

and obtain

𝛽∗′ = ቈ (𝐵22)−1𝐵21 𝐼 0
0 0 𝐼 ቉ (A10)

By the formula of matrix inverse in block form Eq. (12) and Eq. (13) we know 𝛽′ = ቈ 𝐵21 𝐵22 0
0 0 𝐵33 ቉ implies

𝐵31 = 0.
To prove the necessity, we assume without loss of generality that the last 𝑘 components of 𝑌𝑡 are I(0). Then a

cointegrating matrix 𝛽∗ can be written as:

𝛽∗′ = ቈ 𝐵∗21 𝐵∗22 𝐵∗23

0 0 𝐵33 ቉ (A11)

because a full rank transformation of the last𝑘 I(0) components of𝑌𝑡 are still I(0), thus the𝑛×𝑘matrix (0, 0, 𝐵33) is a
cointegratingmatrix of𝑌𝑡 , containing𝑘 independent I(0) components. PremultiplyEq. (A11)by ቈ 𝐼 −𝐵23∗(𝐵33)−1

0 𝐼 ቉.
We obtain

𝛽′ = ቈ 𝐵21 𝐵22 0
0 0 𝐵33 ቉ (A12)

This proves the necessity. It is to note that making 𝐵23 = 0 is not the consequence of 𝑘 I(0) components in 𝑌𝑡
but the convention of normalization of orthogonal cointegration relations and the I(0) components. □
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