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ABSTRACT 

The precise prediction of carbon emissions trading prices is the foundation for the stable and sustainable 

development of the carbon financial market. In recent years, influenced by a combi- nation of factors such as the 

pandemic, trading regulations, and policies, carbon prices have exhibited strong random volatility and clear non-

stationary characteristics. Traditional single-perspective prediction methods based on conventional statistical 

models are increasingly inadequate due to the homogenization of features and are struggling to adapt to China’s 

regional carbon emissions trading market. Therefore, this paper proposes a multi-perspective fusion-based 

prediction method tailored to the Chinese market. It leverages carbon emissions trading information from key cities 

as relevant features to predict the price changes in individual cities. Inspired by the development of artificial 

intelligence, this paper implements various time series models based on deep neural networks. The effectiveness 

of the multi-perspective approach is validated through multiple metrics. It provides scientific decision-making tools 

for domestic carbon emissions trading investors, making a significant contribution to strengthening carbon market 

risk management and promoting the establishment and rational development of a unified carbon market in China. 
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1. Introduction and literature review  

Carbon emissions trading, as a market mechanism aimed at reducing greenhouse gas emissions, has been 

widely implemented globally (Carl and Fedor, 2016). For instance, the European Union Emissions Trading System 

(EU ETS) and China’s national carbon market launched in 2021 are indicative of this global trend. With increasing 

international concern over climate change, carbon prices are generally on the rise in most markets, exerting greater 

pressure on businesses to reduce emissions. Additionally, to prevent carbon leakage and capacity shifting, some 

regions like the European Union are considering the implementation of carbon border adjustment mechanisms to 

ensure fair competition for high-carbon products. Furthermore, in addition to mandatory carbon markets, 

voluntary carbon markets and other forms are also gradually emerging.  

China, as the world's largest emitter of greenhouse gases and a major economic powerhouse, is currently 

accelerating its transition from a high-carbon to a low-carbon economy (Bi et al., 2019; Liu et al., 2023; Wang et al., 

2023). As of December 22nd, the national carbon emissions trading market has achieved a cumulative trading 

volume exceeding 10 billion yuan. Since the launch of the national carbon market, it has operated for 350 trading 

days, with a cumulative trading volume of 2.23 billion tons of carbon emissions quotas and a total trading volume 

of 10.121 billion yuan. While ensuring the smooth operation and healthy development of the trading market, it has 

played a pivotal role in promoting greenhouse gas emission reductions among enterprises and strengthening 

awareness of low-carbon development in various sectors of society. In this context, the importance of carbon 

emissions trading prediction is self-evident. Predictions for the carbon market not only provide critical guidance 

for China's economic restructuring, the development of green industries, and the innovation of clean technologies 

but also ensure that China can meet its global emissions reduction commitments, including peaking its carbon 

emissions by 2030 and achieving carbon neutrality by 2060. This market-oriented mechanism holds profound 

significance for China's leadership role in global climate governance and its continued economic prosperity. 

In the early stages, constrained by the limited development of mathematical tools, scholars predominantly 

employed qualitative analysis methods for forecasting carbon emissions trading prices (Zhu et al., 2018). However, 

with the rapid advancement of computer technology, an increasing number of researchers began to adopt 

quantitative analysis methods for predicting carbon emissions trading prices. Methodologically, the relevant 

research can be categorized into three main groups: statistical models, artificial intelligence models, and ensemble 

models. Statistical models primarily encompass Generalized Autoregressive Conditional Heteroskedasticity 

(GARCH) models (Byun and Cho, 2013), Dynamic Model Averaging (DMA) (Koop and Tole, 2013), Autoregressive 

Moving Average (ARMA) models (Sanin et al., 2015), Vector Autoregression (VAR) models (Yang, 2023) and similar 

approaches. Nevertheless, these models often lack consideration of the inherent time series features and may not 

be suitable for long-term forecasting (Sun and Zhang, 2018). In contrast, artificial intelligence models have gained 

prominence among scholars due to their robust learning capabilities and the absence of assumptions about data 

distribution, such as normality or uniformity. Prominent models in this category include Artificial Neural Networks 

(ANNs) (Atsalakis, 2016), Multilayer Perceptron (MLP) models (Fan et al., 2015), and Least Squares Support Vector 

Machine (LSSVM) models (Zhu et al., 2017a). However, existing models for carbon emissions trading prediction 

tend to exhibit structural simplicity, which can result in overfitting issues. Ensemble prediction models partially 

mitigate such problems and encompass data preprocessing, optimization algorithms, and individual prediction 

models. Data preprocessing techniques include Empirical Mode Decomposition (EMD), Ensemble Empirical Mode 

Decomposition (EEMD) (Huan-ying and Xiang- sheng, 2018), and Modified Empirical Mode Decomposition 

(MEEMD) (Yang et al., 2020). Optimization algorithms comprise Particle Swarm Optimization (PSO) (Zhu et al., 

2017b) and Genetic Algorithms (GA) (Wang et al., 2016). Individual prediction models encompass Extreme Gradient 

Boosting (XGBoost) (Zhu et al., 2018) and Extreme Learning Machine (ELM) (Li et al., 2016), among others. The 

central philosophy behind ensemble forecasting models is the disaggregation of carbon emissions trading prices 
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into multiple modalities, enhancing predictive precision through the amalgamation of forecasts for each modality. 

Nonetheless, an examination of contemporary scholarly literature indicates several deficiencies in pertinent 

research. Firstly, these methodologies necessitate the cultivation of numerous foundational learners, predicated on 

intricate optimization sequences. Secondly, a proportion of studies frequently employ a unimodal conceptualization 

strategy for prognosticating across various modalities. These attributes introduce significant complexities when 

endeavoring to directly apply ensemble models for the prognostication of profoundly stochastic carbon trading 

datasets.  

The central philosophy behind ensemble forecasting models is the disaggregation of carbon emissions trading 

prices into multiple modalities, enhancing predictive precision through the amalgamation of forecasts for each 

modality. Nonetheless, an examination of contemporary scholarly literature indicates several deficiencies in 

pertinent research. Firstly, these methodologies necessitate the cultivation of numerous foundational learners, 

predicated on intricate optimization sequences. Secondly, a proportion of studies frequently employ a unimodal 

conceptualization strategy for prognosticating across various modalities. These attributes introduce significant 

complexities when endeavoring to directly apply ensemble models for the prognostication of profoundly stochastic 

carbon trading datasets. 

Thus, this paper presents a multi-perspective fusion-based approach for forecasting carbon emissions trading, 

primarily addressing the pronounced stochasticity and non-stationarity exhibited by carbon emissions trading 

prices in Chinese cities. On one hand, the method enhances predictive capacity by amalgamating the price changes 

in carbon trading across multiple cities. On the other hand, inspired by the generalization capabilities inherent in 

large models (Brown et al., 2020) relying on an extensive set of parameters, the approach employs diverse deep 

neural network architectures to enhance model fitting capabilities. 

The remainder of this paper is organized as follows: Section 2 the research methodology, including deep 

learning models for carbon trading price prediction and relevant evaluation metrics; Section 3 reports the urban 

carbon trading dataset used in this study, the basic process of the multi-perspective fusion algorithm, and the 

experimental results with associated analysis. Finally, our conclusions are reported in Section 4. 

2. Research methods  

The task of carbon trading price prediction involves time series forecasting. Traditional methods such as ARMA 

(Hao et al., 2020), SVM (Lu et al., 2020), and ensemble learning (Zhu et al., 2018) rely on high-quality features and 

stable data distributions, making them less suitable for predicting non-stationary distributions in the context of 

China's carbon trading prices. With the development of deep neural networks, especially in terms of their 

remarkable generalization capabilities, this has inspired innovative approaches. In this paper, we introduce cutting-

edge work in time series analysis to enhance the predictive ability for the Chinese carbon emission trading market. 

The specific methodology is as follows: 

2.1. Time Series Algorithms 

In this subsection, we will provide a detailed overview of some time series models that have been utilized for 

carbon trading price prediction, as well as introduce novel deep neural network-based time series models that have 

not yet been applied but are suitable for carbon trading price forecasting tasks. 

(1) LSTM (Graves and Graves, 2012): 

Within the realm of recurrent neural networks (RNNs), Long Short-Term Memory (LSTM) units represent a 

significant advancement, particularly in the context of carbon trading price prediction (Zhou et al., 2022). LSTM has 

been instrumental in addressing a fundamental challenge encountered in traditional RNNs, namely the vanishing 
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and exploding gradient issues. These issues manifest when the network is trained to identify patterns within 

extensive sequences, making it arduous for conventional RNNs to retain memory of past inputs within the sequence. 

In contrast, LSTM, with its specialized architectural design, excels in capturing long-term dependencies inherent in 

sequential data, which is crucial in the context of predicting carbon trading prices. 

The integration of LSTM and Fully Convolutional Network (FCN) stands as a sophisticated deep learning 

architecture, offering significant potential for enhancing carbon trading price prediction. LSTM's capability to model 

long-range temporal dependencies within sequential data is synergized with FCN's feature extraction and spatial 

modeling capabilities. This fusion creates a versatile computational framework well-suited for tackling the intricate 

task of forecasting carbon trading prices. LSTM, known for encoding complex temporal relationships and effectively 

handling challenges like the vanishing gradient problem, is highly relevant when dealing with carbon trading data, 

which often exhibits substantial volatility. 

(2) LSTM-FCN (Karim et al., 2017): 

Furthermore, FCN, initially designed for image segmentation, gracefully adapts to the one-dimensional nature 

of time-series data, enabling it to adeptly extract both local and global temporal features from the carbon trading 

price sequences. This harmonious integration empowers the model to gain a deeper understanding of the intricate 

patterns within carbon trading price data (Ji et al., 2019), leading to superior predictive performance in the realm 

of carbon trading price forecasting. 

(3) mWDN (Wang et al., 2018): 

The Multilevel Wavelet Decomposition Network (mWDN) is an advanced neural network architecture rooted 

in the principles of multiresolution analysis, particularly wavelet transform theory. mWDN is designed to facilitate 

the decomposition of complex data into multiple levels of wavelet representations, thus enabling hierarchical 

feature extraction and analysis. This network incorporates a series of wavelet transformation layers, each 

responsible for capturing specific frequency and spatial information across different scales. 

The resulting multilevel representations are subsequently processed and integrated to facilitate tasks such as 

signal denoising, feature extraction, or even hierarchical classification. mWDN holds great promise in applications, 

including carbon trading price predictions, where the inherent multiscale nature of data needs to be effectively 

leveraged for improved understanding and decision-making. Its efficacy derives from its ability to harness the 

advantages of wavelet analysis within the context of deep learning paradigms, thereby enhancing the network's 

capacity for discerning intricate patterns and structures within data across multiple resolutions. 

(4) TCN (Bai et al., 2018): 

A Temporal Convolutional Network (TCN) is an advanced neural network architecture specialized in modeling 

sequential data with a focus on exploiting temporal dependencies. TCN leverages a one-dimensional convolutional 

structure with causal or dilated convolutions, enabling it to efficiently capture long-range dependencies within 

time-series data. This network architecture is designed to address various temporal modeling tasks, including 

forecasting, classification, and generative modeling. Notably, TCN's unique attributes, such as its ability to maintain 

a wide receptive field while preserving data causality, facilitate parallelization for faster training, and adaptability 

to sequences of varying lengths, make it particularly well-suited for applications like carbon trading price 

forecasting (Zhang and Wen, 2022). TCNs have consistently demonstrated remarkable performance in a wide range 

of temporal data analysis tasks, establishing them as a prominent choice in modern deep learning applications for 

time-series processing. 

(5) TST (Zerveas et al., 2021): 

The Temporal Set Transformer (TST) is an advanced neural network architecture designed for the analysis and 

modeling of temporal data sequences, making it particularly well-suited for tasks like carbon trading price 

predictions. Drawing inspiration from the transformer architecture, originally developed for natural language 
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processing, TST extends its application to sequential data. This model employs self-attention mechanisms to 

capture long-range temporal dependencies and interactions within input time-series data, enabling it to discern 

intricate temporal patterns effectively. TST also utilizes set-based operations to process unordered data, 

accommodating scenarios with irregular time intervals or variable-length sequences. By combining self-attention 

and set-based processing, TST offers a versatile and powerful framework for temporal data analysis, demonstrating 

its effectiveness in various time-series-related applications, including carbon trading price forecasting. 

(6) XceptionTime (Ismail Fawaz et al., 2020): 

InceptionTime is a sophisticated deep learning architecture tailored for the analysis of time-series data, 

including its relevance in carbon trading price forecasting. Inspired by the inception module originally introduced 

in convolutional neural networks, this innovative design comprises multiple parallel convolutional and pooling 

pathways of varying filter sizes. This enables the network to effectively capture multiscale temporal features within 

time-series sequences. InceptionTime combines various filter sizes to extract diverse temporal patterns while also 

incorporating bottleneck layers to reduce computational complexity. With its deep and flexible structure, 

InceptionTime excels at modeling intricate temporal dependencies, consistently demonstrating exceptional 

performance in tasks such as time-series classification and forecasting. 

(7) XCM (Fauvel et al., 2021): 

XCM, an acronym for "Explainable Convolutional Neural Network," is an advanced neural network architecture 

engineered to enhance the interpretability of deep learning models. In addition to its utility in medical diagnosis 

and autonomous systems, XCM's transparency-enhancing techniques also make it highly valuable for applications 

like carbon trading price forecasting. It provides valuable insights into model reasoning, aiding in better 

understanding and decision-making in this context. 

(8) gMLP (Liu et al., 2021): 

gMLP, or "gated Multilayer Perceptron," is an innovative neural network architecture that introduces gating 

mechanisms within the traditional Multilayer Perceptron (MLP) structure. By incorporating learnable gating units 

similar to those found in recurrent neural networks (RNNs), gMLP enhances the capacity of MLPs to model 

sequential data. This feature makes gMLP highly applicable in various tasks, including carbon trading price 

forecasting (Wang et al., 2021), where it can efficiently capture long-range dependencies and contextual 

information within sequences, improving the accuracy of predictions in deep learning applications. 

(9) MiniRocket (Tan et al., 2022): 

MiniRocket is a state-of-the-art machine learning technique designed for the analysis of time-series data, 

including its applicability to tasks such as carbon trading price forecasting. It leverages random convolutional 

kernels to efficiently perform feature extraction. MiniRocket employs a random selection of convolutional filters, 

followed by an aggregation operation, enabling it to capture essential temporal patterns and dependencies within 

time-series sequences. This approach excels in both computational efficiency and predictive accuracy, making 

MiniRocket a valuable tool for various time-series data analysis tasks, including classification and regression. Its 

demonstrated effectiveness in handling large-scale and high-dimensional time-series datasets underscores its 

potential for real-world applications that require robust time-series analysis capabilities. 

2.2. Error Metrics 

In this section, we will delineate the assessment metrics for several prototypical time series forecasting models. 

(1) MSE: 

The Mean Squared Error (MSE) loss ℒℳ𝒮ℰ  is a commonly employed criterion in regression tasks and certain 

optimization problems in the realm of machine learning and statistical modeling. It quantifies the average squared 

difference between the predicted values and the actual ground truth values. Mathematically, given $n$ predictions 
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𝑓(𝑥𝑖) and and corresponding true values 𝑦𝑖, the MSE is defined as: 

ℒℳ𝒮ℰ =
1

𝑛
∑(𝑦𝑖 − 𝑓(𝑥𝑖))

2
𝑛

𝑖=1

 

where𝑥𝑖  is the 𝑖-th sample and 𝑓 the predicted function.  

The characteristics of the MSE curve are smooth continuity and differentiability. Additionally, when the 

difference between 𝑦𝑖 and 𝑓(𝑥𝑖) exceeds one unit, it increases the error; when the difference is less than one unit, 

it decreases the error. This behavior is dictated by the properties of squares. In other words, MSE imposes a greater 

penalty on errors with larger magnitude (> 1) and a smaller penalty on errors with smaller magnitude (< 1). From 

a training perspective, the model tends to prioritize points with larger errors and assigns greater weight to these 

locations. 

(2) MAE: 

The Mean Absolute Error (MAE) is a prevalent metric in the fields of machine learning, statistics, and 

econometrics when gauging the performance of regression models. Unlike quadratic loss functions, the MAE 

provides a linear penalty for prediction errors. Specifically, it calculates the average magnitude of errors between 

the predicted and the actual values, without considering their direction. Mathematically, given 𝑛 predictions 𝑓(𝑥𝑖) 

and and corresponding true values 𝑦𝑖, the MAE is defined as: 

ℒℳ𝒜ℰ =
1

𝑛
∑|𝑦𝑖 − 𝑓(𝑥𝑖)|

𝑛

𝑖=1

. 

The merit of MAE lies in its interpretability, as it directly signifies the average error magnitude in the units of 

the variable of interest. Furthermore, due to its linear nature, MAE is less sensitive to outliers compared to squared 

error metrics, making it particularly suitable for applications where large deviations are not intrinsically more 

penalizing than smaller ones. 

(3) MAPE: 

The Mean Absolute Percentage Error (MAPE) is a widely-used relative metric for assessing the accuracy of 

predictive models, especially in forecasting tasks within domains like economics, finance, and operations research. 

Unlike absolute error metrics, which measure errors in the original units of the data, the MAPE expresses errors as 

a percentage, making it scale-independent and facilitating comparisons across different data sets and units. 

Mathematically, given 𝑛 predictions 𝑓(𝑥𝑖) and and corresponding true values 𝑦𝑖, the MAPE is defined as: 

ℒℳ𝒜𝒫ℰ =
1

𝑛
∑ |

𝑦𝑖 − 𝑓(𝑥𝑖)

𝑦𝑖
|

𝑛

𝑖=1

. 

The outcome is presented in percentage terms, with a smaller MAPE value suggesting a better fit of the 

predictive model to the actual data. 

(4) 𝑅2 Score: 

The 𝑅2 score, commonly known as the coefficient of determination, quantifies the proportion of the variance 

in the dependent variable that is predicted from the independent variables in a regression model. It provides 

insights into the goodness-of-fit of the model to the observed data and is a metric used to evaluate the performance 

of regression algorithms. Mathematically, given 𝑛  predictions 𝑓(𝑥𝑖)  and corresponding true values 𝑦𝑖 , the 𝑅2 

score is defined as: 
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ℒℛ2 = 1 −
∑ (𝑦𝑖 − 𝑓(𝑥𝑖))𝑛

𝑖=1

∑ (𝑦𝑖 − 𝑦)𝑛
𝑖=1

, 

where 𝑦 is the mean of the actual values. An 𝑅2 score closer to1 indicates that a larger proportion of variance 

in the dependent variable is accounted for by the regression model. However, it's important to approach 𝑅2 with 

caution. A higher 𝑅2  does not necessarily mean the model is suitable for prediction, especially if the model is 

overfitted. Furthermore, in multiple regression scenarios, 𝑅2  can increase just by adding more variables, 

regardless of their relevance, so adjusted 𝑅2 is sometimes considered to account for the number of predictors in 

the model. 

3. Carbon Trading Growth Forecast Method 

This section primarily focuses on the exposition of our experimental setup and methodological analysis. 

3.1. Sample Selection and Augmentation 

This study primarily focuses on the carbon emission trading pilots in four Chinese cities: Shenzhen, Shanghai, 

Hubei, and Guangzhou. Due to the presence of missing data in the original dataset, we adopted a two-pronged 

approach. Firstly, to ensure timeliness, the sample period was limited to August 1, 2021, through August 30, 2023. 

Secondly, a combination of mean imputation and zero imputation techniques was employed to ensure data 

completeness. 

Furthermore, to validate the effectiveness of the multi-perspective forecasting method, this paper takes the 

four cities as subjects and predicts the percentage changes in carbon emission trading for individual cities. 

Specifically, as illustrated in Figure 1, the left-hand side figure depicts the distribution of percentage changes in the 

original data, while the right-hand side elucidates the mean and variance of data pertaining to each city. 

 

Figure 1. Data distribution. 

3.2. Training Process 

The algorithm for predicting carbon trading prices based on multi-perspective fusion adheres to the general 

workflow of time series forecasting with deep learning models. This process includes the following steps: 
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 Data Collection and Preparation: Gather high-quality carbon trading price increase data that is relevant to 

the problem. Clean the data by addressing issues like missing values, outliers, and duplicates. Normalize or 

standardize the data to ensure consistent scaling. 

 Feature Aggregation: Combine the increase data from Shanghai, Shenzhen, Hubei, and Guangdong as relevant 

features. Implement a sliding window approach with a window size of 90 days to forecast the next day's 

prices. 

 Data Segmentation: Use a time-based segmentation method to split the dataset into three subsets: a training 

set (80%), a validation set (20%), and a testing set. 

 Model Selection: Choose deep learning models suitable for time series forecasting, such as LSTM, LSTM-FCN, 

mWDN, etc. Configure the number of neurons in hidden layers to achieve specific network architectures. 

 Hyperparameter Tuning: Train the models by adjusting hyperparameters such as learning rate, batch size, 

and the number of iterations. Monitor the loss function and other potential evaluation metrics during the 

training process. 

 Performance Evaluation: Assess the model's performance using the validation set and fine-tune model 

algorithm parameters to prevent overfitting or underfitting. 

This structured approach ensures the development of an effective carbon trading price prediction model that  

3.3. Results and Analysis 

In this experiment, the baseline models employed are all based on neural network algorithms, as described in 

Section 2, including LSTM, LSTM-FCN, mWDN, TCN, TST, among others. Furthermore, we ultimately adopted Mean 

Squared Error (MSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and R-squared score 

(𝑅2 score) as evaluation metrics. Additionally, this experiment utilized the past 90 days' data as samples to predict 

the percentage increase for the following day, partitioning the dataset with an 80% training set and a 20% testing 

set. In the subsequent content, we will present the algorithmic performance from both the training and testing 

perspectives. 

As shown in Figure 2, during the training process, we selected Mean Squared Error (MSE) as the evaluation 

criterion, as shown in the figure. The horizontal axis represents the training iterations, while the vertical axis 

represents the MSE. We specifically chose Shanghai as representative cases. The red dashed line represents the 

training curve based on data from a single source, while the blue solid line represents the training curve when 

integrating data from other cities. 

To ensure fairness in the comparison, the algorithm model parameters were kept consistent. The results 

indicate that among various model performances, the multi-perspective fusion approach consistently outperforms 

single-source data training. 

Furthermore, within the testing dataset, we computed the relevant performance metrics. Specifically, lower 

values of Mean Squared Error (MES), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE) are 

desirable, while higher 𝑅2 𝑠cores indicate superior performance. As demonstrated in Table 1, it is evident that the 

proposed Multi-perspective Fusion method consistently outperforms single-source predictions, with the exception 

of the mWDN and XCM models. This observation aligns with the training curves based on the Shanghai dataset. In 

conclusion, we opted for models trained on data from Shanghai City to perform inference on the testing dataset, as 

illustrated in the Figure 3 and Figure 4. In this context, the red dashed line represents the predictions of the baseline 

model, while the blue solid line represents the predictions of the multi-perspective model. Taking the data from May 

to June 2023 as an example, the original data exhibited a downward trend. However, in most of the multi-perspective 

models, correct predictions were made, whereas the baseline models such as XCM and MiniRocket incorrectly 

predicted an upward trend. This clearly underscores the superior predictive capability of the multi-perspective 
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models in capturing trends. 

 

Figure 2. The mean squared error (MSE) loss for different algorithmic models trained on Shanghai’s carbon 

trading percentage increase data. 

Table 1. Evaluation Indicators in Shanghai. 

Model Total Params MSE MAE MAPE 𝑅2 Score 

LSTM 565801 6.31 1.66 90794016.0 0.11 
LSTM_MPF 568201 6.12 1.71 94586440.0 0.14 
LSTM_FCN 341093 7.69 2.03 140405504.0 -0.08 
LSTM_FCN_MPF 343781 7.21 1.75 83412760.0 -0.02 
mWDN 476773 7.68 2.07 124977992.0 -0.08 
mWDN_MPF 477349 10.98 2.61 134746448.0 -0.55 
TCN 66676 7.1 1.64 83253008.0 0.0 
TCN_MPF 67276 7.1 1.62 77472032.0 0.0 
TST 419201 9.31 2.28 140712688.0 -0.31 
TST_MPF 419585 7.61 1.95 109542008.0 -0.07 
XceptionTime 399090 8.07 2.12 151877472.0 -0.14 
XceptionTime_MPF 399570 7.82 2.0 136900032.0 -0.1 
XCM 47619 7.45 2.01 145423456.0 -0.05 
XCM_MPF 116739 8.01 2.15 138918912.0 -0.13 
gMLP 2426101 9.84 2.41 158444368.0 -0.39 
gMLP_MPF 2426869 8.43 2.22 124328128.0 -0.19 
MiniRocket 29989 10.3 2.6 203984768.0 -0.45 
MiniRocket_MPF 29989 7.56 1.99 112000360.0 -0.07 
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Figure 3. Inference results of the benchmark model trained based on Shanghai data. 

 

Figure 4. Inference results of the MPF model trained based on Shanghai data. 

 4. Conclusion  

The regional carbon emission trading market in China was established relatively late. In recent years, it has 

been subject to a combination of factors such as the COVID-19 pandemic, trading regulations, and policies. 

Consequently, carbon prices have exhibited significant random fluctuations, displaying pronounced nonlinear and 
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non-stationary characteristics. Existing single-perspective forecasting methods tend to homogenize various 

distinctive features within the original carbon price time series, only addressing specific aspects of carbon price 

temporal fluctuations. They often fail to capture the comprehensive and effective information underlying carbon 

price volatility, making them less suitable for China's regional carbon emission trading market. 

Therefore, this paper introduces a multi-perspective fusion-based forecasting approach tailored to the Chinese 

market. It leverages carbon emission trading information from key cities as relevant features to predict the price 

changes in individual cities. In the practical implementation, data from four cities, namely Shanghai, Shenzhen, 

Guangdong, and Hubei, were selected. Comparative analysis was performed using multiple deep forecasting models. 

Both the training and testing phases validated the effectiveness of our approach. However, there are some 

limitations in this work, including the high degree of data missingness, substantial randomness, and room for 

improvement, especially with regard to the R2 score metric. Future research will focus on the following three areas: 

(1) in-depth exploration of factors influencing trading randomness; (2) construction of deep forecasting models 

tailored to high randomness scenarios; (3) multi-model fusion, among others. 
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