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ABSTRACT

Cancer chemotherapy is generally associated with many severe adverse effects. Many cancer studies are currently
focused on repurposing conventional non-toxic anti-parasite drugs for cancer treatment. Since cancer cells and
parasites have many features in common, some anti-parasite drugs such as benzimidazoles have been recently
found to possess the anti-cancer activity. Benzimidazoles act against cancer by inhibiting tubulin polymerization,
inducing cancer cell apoptosis, arresting cell cycle and over-generating reactive oxygen specimen. In this review,
we summarize the anticancer features of these drugs in recent investigations, lead to reconsideration of
benzimidazoles as a family of anti-cancer chemotherapeutics with non-toxicity or low toxicity to the normal cells
and tissues. We particularly highlight the recent progresses using nanoformulations for enhanced cancer therapy
and provide our prospects in the future research.
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1. Introduction

Conventional chemotherapeutics are normally non-selective. These therapeutic agents not only kill cancer
cells but also damage healthy tissues and cells, causing adverse effects [1] and influencing patients’ quality of life
[2]. For this reason, there is a great motivation to repurpose conventional anti-pathogen drugs with a long-term
safety history for cancer chemotherapy. The benzimidazole family is one of such safe drugs.

Benzimidazoles are heterocyclic organic compounds, consisting of imidazole and benzene (as illustrated in
Figure 1) with a high anti-helminth efficacy and a low level of toxicity to healthy cells [3, 4]. Apart from the high
anti-helminth activity, benzimidazoles have been also found to possess anti-fungal [4], anti-bacterial [5], anti-viral
[6] and anti-inflammatory activity [7]. Due to extensive similarities between parasites and cancer cells [8],
benzimidazoles have also shown some anti-cancer activity, as confirmed in many studies [9]. Moreover,
benzimidazole drugs are reported to enhance the efficacy in combination with other treatments such as
conventional chemotherapy [10] and radiation therapy [11]. Interestingly, some benzimidazole drugs induce
apoptosis of drug-resistant cancer cell lines [12] [13]. More importantly, benzimidazole drugs kill cancer cells in a
selective way [14], i.e. via targeting tubulin polymerization dominantly in rapidly dividing cells such as parasites
and cancer cells [15], leaving healthy cells being not much affected.

Figure 1. Chemical structure of benzimidazole drugs (albendazole and mebendazole) as heterocyclic organic
compounds, consisting of imidazole and benzene, as well as other functional groups [126].

Although benzimidazole drugs have shown promise for cancer therapy, their low water solubility presents a
significant challenge for their clinical application and therapeutic outcomes [16]. To overcome this limitation,
nanoformulating benzimidazole drugs has emerged as a viable approach to increase their solubility and improve
their efficacy in cancer therapy.

In this review, we aim to summarize the anti-parasite and anticancer features of benzimidazole drugs and
their mechanisms of action. We further highlight the superior potentials of benzimidazoles such as safety and
effectiveness on resistant cancer cells along with the limitation to their clinical applications, and then present the
recent progresses using their nanoformulations for enhanced cancer therapy in combination with other drugs or
treatment modes.

2. Anti-parasite performance of safe benzimidazole drugs

Benzimidazole drugs have widely been used as anti-helminth agents in both human and livestock since the
1960s [17]. These drugs have rapidly become more popular than previous medications due to superiority in terms
of efficacy, toxicity and application [18]. For instance, benzimidazoles have high anti-parasitic effect on some
protozoa, cestodes (tapeworms), trematodes (flukes) and nematodes (roundworms) [19], as summarized in Table
1. Interestingly, benzimidazole derivatives, triclabendazole and praziquantel, are considered as the main
treatments for trematoda [20]. However, praziquantel had no efficacy while triclabendazole was highly effective
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for some trematoda such as fasciolias [21].

Table 1. The antihelminth effect of benzimidazole drugs

Helminth type Helminth sub-type Benzimidazole
drug Outcome Ref.

Protozoa

Giardia lamblia,
Trichomonas
vaginalis and

microsporidia in
AIDS patients

Fenbendazole,
flubendazole,
mebendazole

Half inhibitory concentration
(IC50) of 0.005 to 0.16 µg/ml [26, 28]

Tritrichomonas foetus Albendazole,
mebendazole IC50 of 2.3-9.4 µM [17]

Giardia duodenalis
Albendazole,

mebendazole and
fenbendazole

IC50 of 0.19-0.3 µM [27]

Cestodes Moniezia benedeni
Fenbendazole Effective in concentration of

1-15 µM [23]

Mebendazole Diminished ATP synthesis after
30 minutes exposure [24]

Trematoda

Lung flukes
(Paragonimus) Triclabendazole 100% cure rate with two doses

of 50-75 mg/kg [127]

Opisthorchiasis Mebendazole 100% egg reduction rate and
94% cure rate by 30 mg/kg/day [128]

Liver flukes
(Fasciola) Triclabendazole 100% egg reduction rate and

86% cure rate by 5 mg/kg [129]

Nematodes

Ascaridia galli

Fenbendazole,
parabendazole,
mebendazole,
oxfenbendazole,
thiabendazole

IC50 of 4.5-8 µM [25]

Oesophagostomum
dentatum

Fenbendazole

99.9% cure rate by 3×3 mg/kg
fenbendazole

[130]

Oesophagostomumqu
adrispinulatum

100% cure rate by 3×3 mg/kg
fenbendazole

Ascaris sum 92.4% cure rate by 3×3 mg/kg
fenbendazole

Trichuris suis
66% cure rate by 3×3 mg/kg

fenbendazole

Hyostrongylus
rubidus

99.9% cure rate by 3×3 mg/kg
fenbendazole
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Benzimidazole drugs also have some activity against cestodes [22]. For example, fenbendazole proved
efficacy for Moniezia benedeni cestode in the concentration of 1-15 µM [23] and mebendazole inhibited ATP
synthesis in Moniezia expansa after 30 min exposure [24]. In general, many members of benzimidazole family
drugs, including fenbendazole, parabendazole, mebendazole, oxfenbendazole and thiabendazole, have
demonstrated effectiveness against nematodes with the IC50 value of 4.5-8 µM [25].

In addition to intestinal helminths, protozoa such as Giardia lamblia, Trichomonas vaginalis and even
microsporidia in AIDS patients, proved high susceptibility to benzimidazole derivatives such as fenbendazole,
flubendazole and mebendazole, with the IC50 value being 0.005-0.16 µg/ml [26] (nearly 0.02-0.6 µM). Similarly,
Tritrichomonas foetus protozoa were affected by albendazole and mebendazole with the IC50 of 2.3-9.4 µM [17].
Albendazole, mebendazole and fenbendazole demonstrated the highest activity against protozoa among
benzimidazole drugs [27], being 30-50 times more effective on Giardia lamblia than the non-benzimidazole drug,
metronidazole [28].

Benzimidazole drugs are considered as non-toxic anti-helminth agents in human and livestock [29, 30]. Acute
toxicities are rarely reported for these drugs [29, 31]. Neither chronic adverse effects in dogs and rats treated with
very high dosages, nor irritation, carcinogenicity or teratogenicity in treated rats and rabbits have been observed
[32]. The reported adverse effects mainly include abdominal pain or other gastrointestinal symptoms in 6-12%
treated patients, headache in 2-3%, hair loss in 2%, and symptoms such as vertigo, thrombocytopenia, sleepiness,
fever and fatigue in less than 1% treated patients [33, 34]. The safety of benzimidazole drugs mainly comes from
the selective mode of actions on rapidly proliferating cells [35] through specifically targeting tubulin
polymerization [36], which enables benzimidazole drugs to possess anti-cancer activity in a very safe way as well.

3. Common features of cancer cells and parasites suit actions of benzimidazole drugs

Parasites and cancer cells have many common features, as summarized in Table 2. In general, they are both
resistant to apoptosis and capable of unlimited proliferation in human and livestock [37]. Both are capable of
changing the expression of antigens exposed to the immune system of the host, masking the membrane
components to survive in adverse conditions and secreting enzymes such as protease for the facilitated invasion
to the host tissue [8]. Finally, both parasites and cancer cells are able to guide many innate immune cells such as
monocytes to form a proper microenvironment, allowing them to survive and proliferate well, evading other
tissues and escaping from the immune system [38].

Table 2. Common properties of cancer cell and parasite

Common features of parasites and cancer cells Ref.

Resistance to apoptosis [36]

The capability of unlimited proliferation in the host [36]

Changing the expression of antigens exposed to the host immune system [7]
Masking components on the cell membrane for survival in adverse conditions [7]

Secretion of enzymes such as protease to facilitate the invasion [7]

Guiding innate immune cells such as monocytes to allow them to evade and escape from the immune
system

[37]
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Due to such similar functions, many anti-cancer drugs such as ivermectin [39], artemisinin [40] and histone
deacetylasehave inhibitors [41] have been utilized for parasite treatment. On the other hand, some anti-parasite
drugs such as niclosamide [42], mefloquine [43] and manzamine A [44] have been employed for cancer
chemotherapy. Considering the safety and efficacy of benzimidazole drugs for parasite treatment for many years,
these drugs are also good candidates for being repurposed as anticancer drugs.

The mechanisms of biological activity of benzimidazole drugs against parasites and cancer cells are
schematically summarized in Figure 2, including two major mechanical actions. The first action is their
anti-mitotic activity, stemming from the inhibition of tubulin polymerization through binding to tubulin sites of
rapidly dividing cells [35]. Suppressing tubulin polymerization results in the disruption of mitotic spindle
formation [45] and arrests cell cycle in the mitotic stage [46]. Thus, the disassembly of microtubules reduced the
expression of vascular endothelial growth factor receptor-2 (VEGFR2) [47] and the suppression of VEGFR2 leads
to the inhibition of angiogenesis, cell migration and invasion [48]. The alteration of the microtubule network has
also affected the activity of hypoxia-inducible factor-1α protein [49] and shifted the balance of anti-apoptotic
proteins such as Bcl-2 and apoptosis induction as a result [50].

Figure 2. The schematic mechanisms of actions of benzimidazole drugs.

Secondly, benzimidazole drugs are also able to disrupt cell metabolic processes by inducing the oxidative
stress [51] and reducing the level of available adenosine triphosphate (ATP) [52]. Such a metabolic disruption
may result in the inhibition of glucose uptake [53] and activity of key enzymes such as cytoplasmic and
mitochondria malate dehydrogenase [54], phosphoenolpyruvate [55], fumarate reductase [56], protein kinase [57]
and cysteine protease [58].

Therefore, the specific mechanisms of action of benzimidazole drugs selectively induce apoptosis of rapidly
proliferating parasites and cancer cells, which largely reduces the negative influences on the healthy cells. This
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feature identifies these drugs as selective safe anti-cancer chemotherapeutics.

4. Selective anti-cancer effect of benzimidazole family drugs

As listed in Table 3, many benzimidazole family drugs such as albendazole, fenbendazole, mebendazole,
flubendazole, pantoprazole, oxibendazole, oxfendazole, rabeprazole, MBIC and IODVA1, have shown anti-cancer
effect on a wide range of cancer cells.

Table 3. A summary of reported anticancer activities of benzimidazole drugs

Cancer type Drug Cell line Dosage Outcome Ref.

Breast cancer

IODVA1
(guanidino

benzimidazole
derivative)

MDA-MB-231
(IP) injection of
3.5 mg/kg -three
times per week

Diminishing ≥ 50% of
tumour volume-significant
increase in apoptosis

induction

[131]

Flubendazole
MDA-MB-231,
Hs578T BT-549
and 4T1-Luc

10 mg/kg/day,
every other day

Anti-metastatic effects
through STAT3 inhibition

[88]

Albendazole MCF-7 1-100 µM

Increasing oxidative
biomarkers, GSH depletion,

triggering apoptosis,
enhancing the expression of
Bax/Bcl-xL, p53 and Bax

[59]

Hepatocellular
carcinoma

MBIC HepG2 and
Huh7

Three times of 25
mg/kg

intraperitoneal
injections per
week for 4
consecutive
weeks

Apoptosis induction through
the activation of caspase-3,
reduced cell migration and
invasion, ROS generation

and activation of
c-Jun-N-terminal kinase

(JNK)

[64]

Gastric cancer Pantoprazole HGC27

orally
administered

daily by gavage at
a dose of

75 mg/kg-4
weeks

Repression of telomerase
reverse transcriptase
(TERT) expression,
metastasis inhibition

[89]

Rabeprazole
AGS, KATO III,
MKN-28 and
MKN-45

-
Inhibiting the

phosphorylation of ERK ½
[61]

Mebendazole
ACP-02, ACP-03
and AGP-01

0.15–20 μM
Significant reduction of
invasion, migration and

MMP-2 activity
[62]
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Non- small cell
lung cancer

Oxfendazole
A549, H460,
H1299, H1650
and H1975

5-20 µM
Decreased expression of
c- Src, upregulation of p53

and p21
[63]

Mebendazole
H460, A549,
H1299, and
WI-38

1 mg oral

Induction of abnormal
spindle formation, enhanced
tubulin depolymerisation,
strong antitumour effect,
reducing lung colonies

[68]

Ovarian cancer Albendazole
SKOV3 and
OVCAR3

0.5-10 mg/kg
Suppression of tumour
growth, ascite formation,

VEGF and SPARC expression
[71]

Prostate
cancer

Oxibendazole 22Rv1 and PC-3 25 mg/kg/day
50% tumour size reduction,

increased level of
microRNA-204 and p53

[66]

Fibrosarcoma Mebendazole BHK-21/C13
460 mg/kg via
gastric tube

Enhanced tumour necrosis,
diminished vasculature
penetration and tumour

mitosis

[69]

colorectal
cancer

Flubendazole
HCT116, RKO,

SW480

10 mg/kg or
30 mg/kg by
intraperitoneal
(i.p.) injection
every other day

Inhibition of STAT3 genes
transcription, P-mTOR, P62,
BCL2 and upregulation of
LC3-I/II and Beclin1 genes

[64]

Neuroblastoma Flubendazole
primary

neuroblastoma
cells

50-800 nM
P53-mediated apoptosis

induction
[30]

Hepatocellular
Carcinoma

Albendazole
HepG2, Hep3B
and SKHEP-1

300 mg/kg per
day for 20 days -

Oral

Cell cycle arrest at G0-G1 or
G2-M depending on drug
dosage, tumour growth

suppression

[67]

Non-small cell
lung cancer

Mebendazole A549 and WI38
200-800

μg/day-Oral
administration

75% tumour size reduction,
reduced number and size of
colonies in lung, reduced

vessel densities

[70]

Fenbendazole A549 1 mg - Oral

Mitochondrial translocation
of p53, inhibition of glucose

uptake and glycolytic
enzymes, tumour size

reduction

[60]

Brain cancer Mebendazole GL261
50-100 mg/kg -

Oral

Significant enhancement of
survival time even compared

with vincristine
[132]
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In a nutshell, these drugs effectively inhibit tumor proliferation and growth through (1) reducing GSH [59],
glycolytic enzymes, and glucose uptake [60]; (2) decreasing phosphorylation of ERK1/2 [61]; (3) mitigating the
activity of matrix metalloproteinases 2 (MMP-2) [62] and expression of c- Src [63], P-mTOR, P62, Bcl-2 and STAT3
gene transcription [64]; (4) increasing the level of Bax/Bcl-xL [59], p21[63], p53 [59], caspase 3 [65], LC3-I/II and
Beclin1 genes [64], microRNA-204 [66], oxidative biomarkers and ROS; (5) activating c-Jun-N-terminal kinase
(JNK) [64]; and (6) arresting cell cycle in G0-G1 or G2-M phase [67] and triggering apoptosis.

These benzimidazole drugs have also proved high efficacy in inducing abnormal spindle formation,
increasing tubulin depolymerization [68], inhibiting vasculature penetration [69] and diminishing vessels in
tumor tissues [70], suppressing VEGF and SPARC expression [71], as well as decreasing colony [70] and ascites
formation [71].

A recent study has examined the impact of a wide range of benzimidazole drugs, including flubendazole,
parbendazole, oxibendazole, mebendazole, albendazole, and fenbendazole, on tumor cells derived from
paraganglioma, pancreatic, and colorectal cancer [72]. Many of these drugs demonstrated IC50 values within the
low micromolar or nanomolar range. In silico analysis indicated no interaction between those drugs and P-gp
permeability glycoprotein that plays a pivotal role in drug efflux in tumors. The results also confirmed moderate
to good oral bioavailability. Significantly, target prediction analysis of benzimidazole drugs revealed some
cancer-related molecular targets for fenbendazole and mebendazole with high probability scores.

In efforts to achieve higher efficacy with low drug dosages, many new benzimidazole derivatives have been
developed for the treatment of cancers such as colon cancer [73], breast cancer [74], lung cancer [75],
chondrosarcoma [76] and leukemia [77]. Many new derivatives are screened and effective against a very broad
range of cancers [78, 79]. Furthermore, new benzimidazole derivatives have demonstrated high capability for
overcoming drug resistance. For instance, a benzimidazole derivative with a pyrrolidine chain significantly
reduced the proliferation and migration of sorafenib-resistant hepatocellular carcinoma cells [80]. Similarly,
benzoxazole-based zinc and copper complexes showed remarkably increased apoptosis induction in multidrug
resistant L5178Y mouse T-lymphoma compared to non-complex ones [81].

Benzimidazole drugs’ side effects are rare and mild. Recent studies have further confirmed the selective mode
of actions of benzimidazole drugs against cancer cells. For instance, albendazole inhibited ovarian tumor growth
but showed no toxicity to HOSE normal ovary cells [71]. Mebendazole did not show any toxicity to HUVEC cells
while it was highly toxic to lung cancer cells [70]. Recently, our group has also shown that 4 benzimidazole drugs
induced significant anti-cancer efficacy on B16F0 melanoma cells, but no obvious toxicity to HEK293T healthy
cells [82]. Such a distinct mode of action comes from targeting tubulin polymerization overexpressed in cancer
cells [83]. Furthermore, cancer cells are more susceptible to oxidative stress [84] and benzimidazole drugs are
recognized as ROS generators [85, 86].

5. Inhibition of metastatic cancer cells, cancer stem cells, and drug-resistant cancer cells

Interestingly, benzimidazole drugs exhibit anti-metastatic effect through inhibiting cell migration and
invasion [65]. As an example, mebendazole suppressed metastatic potential of anaplastic 8505c cells and
prevented lung metastasis in advanced thyroid cancer mouse model [87]. Such inhibitions stems from reducing
the activity of matrix metalloproteinases 2 (MMP-2) [62] and repression of signal transducer and activator of
transcription 3 (STAT3) [88], which is considered as the key regulator of cancer metastasis by transducing the
signals from cell surface receptors to the nucleus. Benzimidazole drugs also suppress telomerase reverse
transcriptase (TERT) expression [89], whose activation is associated with metastasis [90].

It is well known that most of chemotherapeutics kill bulk cancer cells but not cancer stem cells, where cancer
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stem cells are responsible for tumor recurrence [91]. Benzimidazole drugs are potent in targeting cancer stem

cells and preventing tumor recurrence. For instance, mebendazole significantly suppressed tubulin

polymerization in temozolomide-resistant stem-like glioblastoma cells [92]. It is also reported that mebendazole

depleted triple-negative breast cancer stem cells [93].

Benzimidazole drugs are also found to prevent the radiation-induced transformation of cancer cells into

radiation-resistant cells, and furthermore sensitize some drug-resistant cells. Many studies have reported the

susceptibility of taxane-resistant cancer cells to benzimidazole drugs, especially albendazole [13, 94]. The

superiority of albendazole to taxane drugs comes from targeting tubulin polymerization [95]. Albendazole also

demonstrated higher efficacy in reducing the level of Bcl-2 antiapoptotic protein, whose expression is elevated in

drug-resistant cells [94]. Flubendazole showed inhibitory activity on vinblastine-resistant leukemia cells in spite

of glycoprotein overexpression [12]. Temozolomide-resistant glioblastoma cells also showed susceptibility to

mebendazole [92]. Therefore, benzimidazole drugs own great potentials for the treatment of drug-resistant

cancer cells. Note that benzimidazole treatment may also result in tubulin mutation and subsequent resistance

[92].

Due to the successful outcomes in in vitro and in vivo studies, clinical trials are ongoing for cancer therapy

with benzimidazole drugs. For example, clinical study of mebendazole as adjuvant treatment for colon cancer is in

Phase 3 (NCT03925662) and mebendazole in combination with other antiprotozoal agents including albendazole

for neoplasm therapy is in Phase 2 (NCT02366884). Three Phase 1 clinical trials are also ongoing for brain tumors

(NCT02644291, NCT01729260, NCT0183787862). Letrozole and omeprazole are other benzimidazole drugs in

Phase 2 clinical trials before the surgery treatment (to stop the growth of tumor cells and then surgery to remove

the tumor) or adjuvant chemotherapy for breast cancer (NCT03774472 and NCT02595372).

6. Nanoformulation for enhanced anti-cancer effect

In spite of the broad spectrum of applications in cancer therapy, the low water solubility of benzimidazole

drugs impedes their clinical applications and therapeutic outcomes [16]. Chemical modification of benzimidazoles

generates many new derivatives with higher water solubility [16, 96]. More promisingly, nanoformulating

benzimidazole drugs that are safely used for many years has emerged as a feasible approach to increase the

bioavailability with extra advantages, including:

i. Extending the lifetime of benzimidazole drugs in blood circulation: Kupffer cells are specialized

macrophages that play a crucial role in defending against foreign particles, bacteria, and other debris that

enter the bloodstream [97]. However, the unique physicochemical properties of nanoparticles present a

challenge to these cells due to their small size. Smaller nanoparticles, particularly those with a neutral or

slightly negative charge, are less likely to be recognized and phagocytozed by Kupffer cells and cleared by

the immune system [98], resulting in a longer circulation time in the bloodstream. This extended

circulation time allows nanoparticles to accumulate at the tumor site with greater specificity and in higher

quantity. This "stealth effect" of nanoparticles is dependent on several factors, such as their size [99],

shape [100], and surface chemistry [101].
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ii. Enhanced permeability and retention (EPR) at the tumor site: EPR is a phenomenon observed in solid

tumors where nanoparticles can passively accumulate at the tumor site. The leaky blood vessels and

impaired lymphatic drainage within the tumor microenvironment allow nanoparticles to accumulate

selectively at the tumor site [102]. This accumulation can increase the efficacy of anti-cancer drugs while

reduce systemic exposure to healthy tissues, thus improving the therapeutic index of drugs [103].

iii. Potential stimuli-responsive release: Stimuli-responsive nanoparticles can be designed to release drugs in

response to specific stimulators within the tumor microenvironment, allowing for the targeted delivery of

drugs to cancer cells while minimizing the exposure of healthy tissues to high drug concentrations [104].

For instance, lipid-coated calcium phosphate (LCP) nanoparticles released albendazole at pH 6-6.5, which

is supposed to be similar to that in the tumor microenvironment while keeping the cargo intact at pH 7.4

[105].

iv. Potential target delivery: Nanoparticles can have targeting capability by functionalizing their surface with

specific molecules that can selectively bind to cancer cells. Nanoparticles can circulate until they

encounter the target cancer cells, where they can bind to the receptors on the cell surface and enter the

cells via endocytosis. This allows the nanoparticles to deliver their therapeutic payload directly to the

cancer cells, while minimize exposure to healthy tissues and reduce systemic toxicity. Folic acid has widely

been used as a targeting moiety for the targeted delivery of benzimidazole drugs to cancer cells due to

overexpression of the folate receptors on cancer cells [106]. As an example, the use of folic acid-targeted

chitosan nanoparticles for the delivery of mebendazole in the treatment of murine triple-negative breast

cancer has been shown to be particularly effective by significantly reducing tumor size and extending the

survival time of mice with triple-negative breast cancers [107]. Similarly, utilizing folate-conjugated

bovine serum albumin (BSA) for co-delivery of albendazole and nanosilver simultaneously inhibited the

energy metabolism of tumor cells, demonstrating superior anti-tumor efficacy compared to other

nanoparticles lacking folic acid modification [108].

Numerous nanoformulations of benzimidazole drugs have been developed in light of the aforementioned

benefits. Some of the formulations, such as liposome for fenbendazole [109] and compritol [110], silver

nanoparticles [111] for mebendazole, graphite-diamond nanoparticles for thiabendazole [112],

polybutycyanocrylate [113], solid lipid nanoparticles for albendazole [114], and methoxy polyethylene

glycol-polycaprolactone nanoparticles for flubendazole [115], have already been developed for parasite therapy.

Of course, these similar nanoformulations can also be explored for cancer therapy. An example is incorporating

albendazole into chitosan-coated PLGA nanoparticles (260–480 nm), which elevated albendazole release to

200-fold compared to untreated albendazole, resulting in superior mucoadhesion and cytotoxicity [116]. Some

nanoformulations of benzimidazole drugs have also been specifically studied for cancer therapy. As illustrated in

Figure 3, albumin nanoparticles in the size of 7-10 nm were promising carriers of albendazole, reducing tumor

size at a very low drug dosage while 200 nm albumin nanoparticles were less effective [117]. In addition to

confirming improved anti-cancer efficacy of albendazole in nanoparticle forms, these results confirm the

importance of the nanoparticle size to the treatment efficiency. The uptake of nanoparticles plays a pivotal role to

increasing the treatment efficiency and smaller nanoparticles are more likely to be taken up by tumor cells [117].
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Figure 3. The average tumor weight (A), average body weight (B), and body circumference (C) in
OVCAR3-bearing mice treated with free albendazole or albumin nanoparticle formulation of albendazole in 10 or
200 nm nanoparticles [117].

Figure 4. Apoptosis induction in B16F0 cells (A), ROS generation in B16F0 cells (B), ROS generation in HEK293T
cells (C), relative Bcl-2 expression in B16F0 cells (D), and relative Bcl-2 expression in HEK293T cells (E) treated
with free or LCP formulation of benzimidazole drugs (2.5 μg/ml) for 24 h [82].
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Recently, our group formulated benzimidazole drugs into 50 nm LCP nanoparticles. These drug-loaded LCP
nanoparticles increased the solubility in PBS by 100-200% and significantly enhanced the apoptosis-induced
anti-cancer efficacy in the treatment of B16F0 melanoma cells via generating more reactive oxygen species (ROS)
and inhibiting Bcl-2 expression, as demonstrated in Figure 4. Very obviously, these drug-loaded LCP
nanoparticles did not show any obvious toxicity and Bcl-2 inhibition in HEK293T healthy cells [82, 105].

7. Combination therapy with benzimidazole drugs

Figure 5. Improved chemotherapeutic outcomes by dual ligand targeting. (A) Tumor growth profile reflecting in
vivo anti-tumor efficacy of OTS-ABZ-LCP, OTS-ABZ-LCP-P160 and OTS-ABZ-LCP-F100P160 intraperitoneally
injected 3 times every two days in the B16F0-bearing mouse model compared to that of PBS injection; (B) PD-L1
expression by excised tumour cells; (C) CD4+ and (D) CD8+ immune cell populations in tumor tissues [131].

More frequently, benzimidazole drugs are combined with other chemotherapeutics, such as paclitaxel [10],
trametinib [118], gemcitabine [119] and methoxyestradiol [120], to enhance the anti-cancer treatment efficacy.
Flubendazole and albendazole at the low dosage were found to significantly potentiate the anti-proliferative effect
of paclitaxel on colon cancers [10]. 2-Methoxyestradiol was the other microtubule-binding agent, exhibiting
synergistic anti-cancer effect in combination with albendazole [120]. Mebendazole in combination with the
methyl ethyl ketone (MEK) inhibitor, trametinib, demonstrated encouraging results for melanoma treatment by
rapidly phosphorylating MEK and extracellular signal-regulated kinases (ERKs), and increasing apoptosis markers
such as cleaved caspase-3 and poly (ADP-ribose) polymerase (PARP) [118]. The therapeutic effects of gemcitabine
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was also promoted in combination with mebendazole [119] and parbendazole [121]. Interestingly, fenbendazole
showed excellent anti-tumourigenic effect in combination with supplementary vitamins [122]. In addition to
vitamins, fenbendazole in combination with rapamycin demonstrated synergistic anti-cancer effect against A549
cancer cells [123]. We also developed lipid-coated calcium phosphate (LCP) nanoparticles combining albendazole
(ABZ) and a TOPK inhibitor, OTS964 for synergistic treatment of skin cancer. The dual-targeting capacity of the
LCP nanoparticles to the programmed death ligand-1 (PD-L1) and folate receptor overexpressed on the surface of
skin cancer cells enabled the combination therapy to completely suppress the skin tumour growth (Figure 5A
and B) [124]. Furthermore, such combination treatment induced a certain level of local anti-cancer immunity by
recruiting more CD4+ and CD8+ T cells into the tumor tissues (Figure 5C and D).

Moreover, benzimidazole drugs have also sensitized tumor cells to radiation therapy [93]. For example, as
shown in Figure 6, mebendazole enhanced survival time and reduced colony formation of malignant meningioma
[11], and also prevented radiation-induced conversion of triple-negative cancer cells into drug-resistant breast
cancer-initiating cells and elevated the sensitivity of cancer cells to radiation [93]. Similarly, albendazole
sensitized small cell lung cancer and metastatic melanoma cells to radiation therapy [125]. Albendazole not only
induced DNA damage in those cells, but also arrested cell cycle at G2/M phase where cells are more sensitive to
ionizing radiation. Therefore, combination of this antihelminthic drug with radiation therapy led to a synergistic
cancer inhibition.

Figure 6. Increased survival rate (A), reduced tumour size obtained by IVIS imaging (B), and quantified average
luminescence by IVIS (C)with the combination of mebendazole and radiation in KT21MG1-bearing mice [11].
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8. Conclusions and future direction
Initially emerged as anti-helminth drugs, benzimidazole drugs have recently been repurposed as anti-cancer

agents largely due to their safety in the long term applications. Benzimidazoles prevent cancer cell growth by 
inhibiting tubulin polymerization and disrupting mitotic spindles, leading to cell cycle arrest and inhibition of 
angiogenic factors such as HIF-1α and VEGF. Moreover, these agents disable cell maintenance by elevating ROS 
generation and reducing ATP, thus suppressing many key enzymes and inducing apoptosis. A higher level of 
tubulin polymerization in rapidly dividing cells leads to a selective toxic effect of benzimidazoles on cancerous 
cells, leaving healthy cells intact. The higher sensitivity of cancer cells to ROS augmentation is the other factor for 
the selective activity of benzimidazoles. Such a selective effect, along with high efficacy in cancer treatment, 
represents benzimidazoles as a promising anti-cancer chemotherapeutics with minimum adverse side effects.

Benzimidazoles are also able to synergize other therapeutic approaches such as chemotherapy and radiation 
therapy. Some members of this family have also shown anti-cancer effect on drug-resistant cells and even cancer 
stem cells. Benzimidazoles not only enhance the efficacy of radiation therapy but also prevent cells from 
transformation to be resistant to the radiation treatment. On the other hand, benzimidazole treatment may cause 
tubulin mutation, and thus the combination with other therapeutics may be considered as the better choice.

Despite the extensive potentials of benzimidazole drugs for cancer treatment, their clinical application is still 
limited due to low water solubility and bioavailability. Nanoformulation of these drugs is promising for improving 
the solubility and bioavailability in addition to providing the opportunity of enhancing their circulation and tumor 
accumulation, targeted delivery and stimuli-responsive release. Until now, there are few studies that have 
investigated nanoformulations of these drugs for cancer therapy. Therefore, nanoformulation of benzimidazoles 
represents a promising future direction as it is still at the infant stage of research. Moreover, combination with 
other therapeutic modules, such as chemotherapeutics, radiation sensitizers, immune checkpoint inhibitors as 
well as target therapy in nanoformulations would synergize the therapeutic outcomes and bloom the repurpose 
applications of benzimidazole drugs in the fight with cancers in the near future.
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