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ABSTRACT  
Adenosine alterations to RNA, which are largely determined by RNA modification writers (RMWs), are critical for cancer 

growth and progression. These RMWs can catalyze different types of adenosine modifications, such as N6-

methyladenosine (m6A), N1-methyladenosine (m1A), alternative polyadenylation (APA), and adenosine-to-inosine (A-

to-I) RNA editing. These modifications have profound effects on gene expression and function, such as immune response, 

cell development. Despite this, the clinical effects of RMW interactive genes on these cancers remain largely unclear. A 

comprehensive analysis of the clinical impact of these epigenetic regulators in pan-cancer requires further 

comprehensive exploration. Here, we systematically profiled the molecular and clinical characteristics of 26 RMWs across 

33 cancer types using multi-omics datasets and validated the expression level of some RMWs in various cancer lines. Our 

findings indicated that a majority of RMWs exhibited high expression in diverse cancer types, and this expression was 

found to be significantly associated with poor patient outcomes. In the genetic alterations, the amplification and mutation 

of RMWs were the dominant alteration events. Consequently, the RNA Modification Writer Score (RMW score) was 

established as a means to assess the risk of RMWs in pan-cancer. We found that 27 of 33 cancers had significantly higher 

scores compared with normal tissues, and it was significantly correlated with prognosis. We also evaluated their impact 

on the tumor microenvironment and the response to immunotherapy and targeted therapy. These findings verified the 

important role of RMWs in different aspects of cancer biology, and provided biomarkers and personalized therapeutic 

targets for cancer.  

KEYWORDS  
RNA modification writer; pan-cancer; genomics; prognosis; tumor immune microenvironment  

 

https://www.anserpress.org/journal/CI
mailto:didiwanyan@zzu.edu.cn
mailto:xiaowang@cpu.edu.cn
mailto:pengyang@cpu.edu.cn
https://www.anserpress.org/


Article                                                        Cancer Insight | 10.58567/ci03020004                                   

Cancer Insight | 2024 3(2) 42-66 
  43 
 

Graphical abstract 

 

Comprehensive analysis of molecular and clinical characteristics of RMW sin pan-cancer. 

1. Introduction 

RNA modification is an epigenetic alteration that exerts influence over various facets of the RNA metabolism, 

such as splicing1, translation2, stability3, and localization4, which enhance the diversity of RNA molecules, thereby 

broadening functional capacities. It has been found that 140 kinds of RNA modifications are present across all fields 

of life, which are essential for gene regulation. Among the different types of RNA modifications, adenosine 

alterations are the most abundant and diverse and are mediated by a group of enzymes known as RNA modification 

writers (RMWs)5. These RMWs can catalyze different types of adenosine modifications, such as N6-

methyladenosine (m6A)6, N1-methyladenosine (m1A)7, alternative polyadenylation (APA)8 and adenosine-to-

inosine (A-to-I) RNA editing9. These modifications can have profound effects on gene expression and function, such 

as immune response10, cell differentiation11, development12, and stress response13. Much literature has reported 

the relationship between these modifications and various diseases, especially cancer, several cancer types have 

been linked to m6A methylation modifications, including breast cancer, liver cancer, gastric cancer, and lung 

cancer13-15. 

The function of m6A methylation writers is to add methyl to adenosine N6 position in mRNA, thus becoming a 

dynamic and abundant RNA modification 15. The core members of m6A writers are METTL3, METTL14, WTAP and 

KIAA1429 16, which cooperate to recognize and methylate specific RNA targets. Other accessory proteins, such as 

RBM15/15B and ZC3H13, can modulate the activity or specificity of the core complex17. m6A methylation writers 

played important roles in diverse functions, such as embryonic development18, neurogenesis19, immune response20, 

cell differentiation21, drug resistance and tumorigenesis22. For example, METTL3 suppresses the growth and 

metastasis of hepatocellular carcinoma by inhibiting SOCS expression23. METTL14 activated MYC in acute myeloid 

leukemia to promote tumor24.  

m1A methylation writers create an abundant and evolutionarily conserved RNA modification25. The known 

m1A methylation writers are TRMT61A, TRMT61B, TRMT10C and TRMT626, which belong to the TRM family of 

tRNA methyltransferase. m1A methylation writers regulate the stability, structure and function, by affecting their 

interactions with ribosomes7, translation factors27 and RNA-binding proteins28. The role of m1A methylation 

writers was studied less than m6A methylation writers in cancers, but some evidence suggests that they may have 

tumor-promoting29 or tumor-inhibiting effects30 depending on the cancer type.  
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APA writers catalyze the alternative cleavage and polyadenylation (APA) of transcripts, which produce diverse 

untranslated regions (UTRs) and poly A tails31. The known APA writers are CPSF, CSTF, CFI, PCF11, CLP1, NUDT21 

and PABPN, which belong to the cleavage and polyadenylation specificity factor complex32. APA writers regulate 

the stability33, translation34, and localization35 of mRNA transcripts, by affecting their interactions with 

microRNAs36, RNA-binding proteins37 and RNA decay38 factors. According to previous reports, APA writers 

regulated in many biological pathways35,39-41. For example, CSTF regulated the expression of TP53 by producing a 

longer 3' UTR that enhances its stability42. 

A-I RNA editing writers -- ADAR, ADARB1, and ADARB2, which belong to the adenosine deaminase acting on 

RNA (ADAR) family of enzymes43, deaminate adenosine to inosine44. A-to-I RNA editing writers regulate the 

splicing45, structure46, and function47 of RNA molecules, by changing their base-pairing properties and interactions 

with RNA-binding proteins. A-I RNA editing writers can change the function by editing the bases in the coding48 or 

non-coding49 regions of oncogenes or tumor suppressors. For example, ADAR1 edited the coding region of AZIN1, 

resulting in a function acquired mutation that promotes the growth and migration of hepatocellular carcinoma 

cells50, however, lncRNA LINC00624 promoted tumor progression and drug resistance by stabilizing ADAR150. 

In summary, RMWs play critical roles in cancer51,52and response to therapy53. Therefore, it is important to 

understand the expression, mutation, regulation, and function of RMWs across different cancer types and their 

implications for cancer prognosis and therapy. However, the molecular and clinical characteristics of RMWs across 

different cancer types are still largely unexplored. In this study, we systematically profiled the expression and 

mutation of 26 RMWs across 32 cancer types using multi-omics data. We investigated the associations between 

RMWs and tumor molecular subtypes, survival outcomes, immune infiltration, drug sensitivity, and therapeutic 

efficacy. We also constructed the RMW score to evaluate the risk of different subtypes of tumors, the impact of 

RMWs on tumor microenvironment and the response to immunotherapy and targeted therapy. Our study revealed 

the molecular and clinical characteristics of RMWs in pan-cancer, and provided potential biomarkers and 

therapeutic targets for personalized cancer treatment.    

2. Methods and materials 

2.1. Differential expression of RMW genes 

RNA -Seq data of pan-cancer were obtained from GTEX and TCGA datasets and downloaded from UCSC Xena 

website (https://xena.ucsc.edu/). Differential gene expression analysis was performed with R package limma. P-

values and logFC of the RMW genes were extracted for heatmap display with R package ggplot2. 

2.2. Survival analysis of RMW genes 

Gene expression of pan-cancer for the GTEx and TCGA datasets, assaying via RNA-seq, was downloaded from 

the UCSC Xena Portal. Differential gene expression analysis was performed with R package limma. The p-values and 

logFC of the RMW genes were extracted for heatmap display with R package ggplot2. 

2.3. Construction of risky score 

The number of genes with significance of Cox analysis in pan-cancer was recorded. If the p value was < 0.05, 

hazard ratio (HR) >1, the gene was taken as a risk factor and the score was added one point; Conversely, if the p 

value was < 0.05, HR <1, the gene is awarded for the protection factor and the score was reduced one point. In 

summary, the final score was used as a risky score. The correlation between RMWs in pan-cancer was shown by 

heatmap. 
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2.4. Validation and mutation of RMW genes 

Validation of RMWs in pan-cancer was analyzed by the online website cBioPortal 

(https://www.cbioportal.org/), including mutations, fusions, amplifications, deletions as well as multiplex 

variations. 

2.5. Gene copy number variation analysis of RMW 

Data on CNV percentage in each cancer, a correlation between CNV with gene mRNA expression, and the profile 

of heterozygous CNV and homozygous CNV were from the online website GSCA database 

(https://guolab.wchscu.cn/GSCA/#/). 

2.6. Methylation analysis of RMW 

Correlation between methylation and expression and methylation difference between tumor and adjust normal 

samples were analyzed by online website GSCA database. 

2.7. Gene regulatory and protein interaction network construction 

Transcription factors and miRNA upstream of the RMWs gene were analyzed using the Regnetwork 

(https://regnetworkweb.org/) and the protein interaction network was analyzed using the STRING 

(https://cn.string-db.org/). Networks were visualized using the Cytoscape software. 

2.8. Construction of RMW score 

The RMW score was analyzed by ssGSEA of the R package GSVA. Boxplots of the increase in RMW score of 33 

tumors from left to right and differences between tumors and paired normal tissues were plotted by R package 

ggplot2. 

2.9. Survival analysis by RMW score in pan-cancer  

Four types of survival analysis models were analyzed by univariate Cox regression in pan-cancer with R 

package survminer and survival, then, plots were plotted with R package forestplot. 

2.10. The GSVA analysis of the RMW score 

Correlation between the RMW score and pathways was calculated in each tumor separately and heatmap was 

plotted with R package pheatmap. The gene sets of GSVA analysis were the latest MsigDB database hallmark gene 

sets. 

2.11. Tumor microenvironment analysis of RMW score 

Stromalcore, ImmuneScore, ESTIMATEScore, and TumorPurity were calculated by R package ESTIMATE and 

plotted by ggplot2 according to previous research methods54. 

2.12. Immune cell infiltration analysis of RMW score 

Immune-infiltration data came from the ImmuCellAI database (https://guolab.wchscu.cn/ImmuCellAI/#!/ ) 

and TIMER2 database (http://timer.comp-genomics.org/timer/), a heatmap was plotted by R package ggplot2.  
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2.13. Analysis of immune related genes correlation in pan-cancer 

Correlation between immunoactivated genes, MHC genes, chemotactic factor genes, chemokine receptor genes, 

and RMW score was shown as a heatmap plotted by R package ggplot2. 

2.14. Prognosis analysis of patients with immunotherapy and targeted therapy 

The prognostic information of patients after different treatments comes from the previous literature, 

GSE13522255 and GSE17630756. Survival analysis was performed using the R package survival, plotted using the R 

package ggplot2. 

2.15. Drug sensitivity analysis of RMW in pan-cancer 

The IC50 data of drug sensitivity of RMWs were from t the Gene Set Cancer Analysis database (GSCA, 

http://bioinfo.life.hust.edu.cn/GSCA/) and Cancer Therapeutics Response Portal (CTRP, 

https://portals.broadinstitute.org/ctrp/). Pearson analysis showed the correlation between mRNA expression and 

drug IC50, and FDR value was used to indicate the significance. 

2.16. Cell Culture 

The BXPC-3 cell line (pancreatic cancer cell), HPDE6-C7 cell line (normal pancreas cell), TE-1 cell line 

(esophageal cancer cell), and HEEC cell line (normal esophageal epithelial cell) were obtained from the American 

Type Culture Collection Center (ATCC). HPDE6-C7 cells and HEEC cells supplemented with 10% (FBS) in endotoxin-

free in DMEM cultivated; BXPC-3 cells and TE-1 cells were maintained in RPMI-1640 in 10% FBS. All human cell 

lines are certified by STR within three years.  

2.17. Real-Time Quantitative PCR (RT-qPCR) 

The total RNA from the cells was extracted by RNA easy reagent and then reverse transcribed by Hiscript Ⅲ 

1st Strand cDNA synthesis reagent (vazyme, r323-01). The subsequent RT-qPCR reaction was performed using 

ChamQ SYBR qPCR Master mix (vazyme, q331-02). See Supplementary Table S1 for specific primer information. 

2.18. Statistical Analysis 

Students' t-test was used to compare the variables between the two groups. Correlation was determined using 

Spearman correlation. p values<0.05 were considered statistically significant. All statistical analyses were 

performed using R software (2022.07.2). 

3. Results 

3.1. Differential expression and risky score of RNA Modification Writers in pan-cancer 

To explore the potential role of RMWs, they were evaluated with cancer sample data from TCGA and normal 

sample data from GTEx by differential expression analysis across pan-cancer (Fig. 1A). We discovered that most 

RMW genes had different expressions across different cancer types, and more than half of them are highly expressed 

in cancer. Among them, CPTF2 and CPSF3 exhibited high expression levels across a wide range of cancers, whereas 

ADARB1 and ADARB2 demonstrated low expression levels in nearly all cancer types. RT-qPCR experiments verified 

the expression, and results showed that the high expression of ADAR, TRMT10 and CPSF2 in PAAD and ADAR, 
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TRMT6, TRMT10, NUDT21, CPSF3, CSTF1 and CSTF2 in ESCA (Fig. 1B). 

Further, we explored the relationship between RMWs and prognosis. To identify risky genes, we used 

univariate Cox regression to analyze the relationship between RMWs and prognosis (Fig. 1C). To visually measure 

the magnitude of every gene’s risk, we developed a risk score to assess. The number of differentially expressed 

genes obtained by Cox regression analysis using expression and survival data was counted in Pan cancer (Fig. 1D). 

In order to explore the relationship between RMWs, we analyzed the correlation between the 26 RMWs, and found 

that most of the RMW expressions were positively correlated (Fig. S1A). At the same time, we also found positive 

correlations between RMWs not only in the same category, but also between different types of RMWs.  

 

Figure 1. Differential expression and a risk score of RMWs between tumor and normal samples. (A). Differential 
expression of RMWs between tumor and normal samples in pan-cancer. The color of each box represents the size of the 
logFC value. White boxes represent p value > 0.05, which has no significant difference. Generally, logFC>1 means fold 
change of more than 2, which is regarded as the screening condition; logFC> 0: gene expression in cancer is higher than 
that in normal tissues; logFC < 0: gene expression in normal tissues is higher than that in cancer tissues. The number in 
the box is the fold change of cancer tissue compared with the normal tissue of the corresponding gene in cancer. (B). RT-
qPCR experiment verified the high expression of ADAR, TRMT10, and CPSF2 in PAAD and ADAR, TRMT6, TRMT10, 
NUDT21, CPSF3, CSTF1and CSTF2 in ESCA. (C). The heatmap showed the univariate Cox regression analysis of RMWs in 
pan-cancer. Gray indicates p > 0.05; red indicates p < 0.05, HR > 1, implying that the gene was a risky factor in this cancer 
and blue indicates p < 0.05, HR > 1, implying that the gene was a protective factor in this cancer. (D). Construction of risk 
score with significant genes in pan-cancer by Cox regression. If a gene was included as a risky factor, then the risk score 
plus one point. If a gene was included as a protective factor, then the score was minus one point, and the final score was 
the risk score. 
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In conclusion, our results showed that most RMWs are highly expressed in cancer and are positively correlated 

with other RMWs. The high expression of most RMWs is risky in cancer, and the crosstalk between RMWs may have 

a potential impact on tumorigenesis and development. Our results can be linked with some previous reports, such 

as m6A writer mettl14 inhibiting colorectal cancer57; TRMT6 promoting liver cancer progression through 

PI3K/AKT signaling pathway58. 

3.2. Genetic alterations of RNA modification writers in pan-cancer  

To determine the genetic alterations of RMWs in pan-cancer, we evaluated the variation, mutation and copy 

number variation of 26 RMWs using the data based on cBioportal website. Variation in the RMW genes in pan-cancer, 

including mutations, fusions, expansions, deletions, and multiple variants (Fig. 2A). Among cancers, BRCA was 

alternated the most frequently, second in OV and third in LUAD. As Figure 2A shown, most genes are alternated in 

cancers. Amplifications occurred the most frequently, with mutations the second of all alteration types. We 

speculate that different alteration types and frequencies of RMWs may be responsible for the difference. 

Since mutations were the second most of alteration, we analyzed mutation types of RMWs deeply in pan-cancer, 

including variant classification, variant type, SNV class, variants per sample, variant classification summary, and top 

10 mutated genes (Fig. 2B-E). In 7 types of variant classification, we found missense mutation was the most frequent 

mutation. After that, we followed SNP and DEL counts to analyze the variant type of RMWs, including SNP (single 

nucleotide polymorphism), ONP (oligonucleotide polymorphisms), INS (insertion mutations), DEL (deletion 

mutations), where the frequency of SNP was the highest. The result showed that C>T, C>A, T>C were the top three 

mutations with the highest number of occurrences. Oncoplot shows the mutation distribution of RMWs and the 

classification of alteration types (Fig. 2F). The top 10 mutated genes were ZC3H13, VIRMA, PCF11, CPSF1, ADARB2, 

ADAR, RBM15, CFI, ADARB1, CSTF3, respectively. Then, we analyzed RMWs related SNP data to detect the frequency 

and variant types in each cancer subtype. Fig. S1B presents the mutation distribution of the top 10 mutated genes 

from inputted gene set in sample set and also provides the classification of SNV types. 

3.3. Copy number variation analysis of RMW genes  

To investigate the reasons for high expression of RMWs, we analyzed the relationship between RMW 

expression and CNV, methylation, and regulation of miRNAs. Among them, copy number variation (CNV), especially 

copy number amplification, is one of the main reasons for high expression of cancer genes. To investigate the specific 

situation of CNVs, we used CNV data from RMWs in the TCGA database. The distribution of CNV pie charts shows 

that the main types of CNVs in 33 types of cancer are heterozygous amplification and deletion (Fig. 3A). Figure 3B 

shows the correlation between CNV and mRNA expression. The association between mRNA expression and CNV 

percentage in samples was based on Spearman's correlation coefficient. The heterozygous CNV map displays the 

percentage of heterozygous CNVs, including the percentage of amplification and deletion in each cancer (Fig. S2A). 

Figure provides the profile of heterozygous CNV of inputted genes in the selected cancers. Similar results were 

gained in the Homozygous CNV profile (Fig. S2B). We found that some RMWs had high CNV frequencies in certain 

cancers. For example, ZC3H13 had high CNV frequency in BRCA, OV, and LUAD. We also observed that some RMWs 

had positive or negative correlations between their CNV percentage and mRNA expression. For instance, WTAP had 

a positive correlation between CNV percentage and mRNA expression in BRCA, while ADARB2 had a negative 

correlation in OV. These results suggested that the genetic alteration of RMWs may be the reason for the expression 

of RMWs, which play an important role in cancer progression. 
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Figure 2. Variation of RMWs. (A). Variation in the RMWs in pan-cancer, including mutations, fusions, expansions, 

deletions, and multiple variants. The sample size of the genetic variant is indicated by color in boxes. Boxes were 

displayed in gray when the number of variant samples was greater than 10; greater than 20 was colored orange; 

greater than 40 was colored dark red. The color at the right of the RMWs means the variant frequency of the gene, 

red means the variant occurs in more cancers and blue means variant occurs in fewer cancers. (B). Variant 

classification: the count of each type of deleterious mutation of inputted gene set in selected cancer types. (C). 

Variant type: the count of SNP and DEL of inputted gene set in selected cancer types. (D). SNV class: the count of 

each SNV class of inputted gene set in selected cancer types. (E). Top 10 mutated genes: the count and percentage 

of variants in top 10 mutated genes. (F). Summarizes the frequency of deleterious mutations in selected cancer 

types. Oncoplot shows the somatic landscape of top 10 alternative RMW in pan cancer. The waterfall plot shows 

mutation information for each gene for each sample. 
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Figure 3. Copy number variation analysis of RMW genes. (A). Pie plot summarizes the CNV of inputted genes in the 

selected cancer types. Hete Amp, heterozygous amplification; Hete Del, heterozygous deletion; Homo Amp, 

homozygous amplification; Homo Del, homozygous deletion; None, no CNV. (B). Correlation between CNV and gene 

expression by non-parametric Spearman correlation test. Red represents positive correlation, blue represents 

negative correlation, circles represent FDR<=0.05, FDR: false discovery rate. 
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3.4. Methylation analysis of RNA modification writers  

RNA methylation is a key mechanism that modulates gene expression by adding methyl to RNA molecules. In 

order to explore the epigenetic regulation, we analyzed the methylation of RMWs. As shown in Fig. 4A, the 

methylation of RMWs in different tumors was highly heterogeneous. These results indicate that most RMWs might 

be methylation-regulating genes. Fig. 4B shows the correlation between methylation and RMWs expression. The 

correlation analysis between methylation and mRNA expression showed that the expression levels of most genes 

were negatively correlated with their methylation levels. Our analysis revealed that the methylation level of most 

RMWs was negatively correlated with their mRNA expression, suggesting that methylation may act as a repressive 

mark for gene transcription. Compared with normal samples, the methylation degree of some tumor samples was 

significantly changed. For example, ZC3H13, VIRMA, PCF11, CPSF1, ADARB2, and ADAR were hypermethylated in 

tumors, while TRMT10C, TRMT6, TRMT61B, METTL14, and METTL16 were hypomethylated in tumors, which are 

consistent with previous studies that reported the differential methylation of RMWs in cancer. 

 

Figure 4. Methylation analysis of RMW genes. (A). Methylation difference between tumor and normal samples of 

inputted genes in the selected cancers. Circles represent FDR<=0.05, FDR: false discovery rate. (B). Correlation 

between methylation and mRNA expression in pan-cancer by non-parametric Spearman correlation test. 
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3.5. Construction of transcription factors and miRNA regulatory network 

To better understand the mechanism behind RMWs, a gene regulatory network was constructed. As shown in 

Fig. 5, results suggested that miRNA regulation of RMWs expression may be related to cancer progression. Some 

reports have confirmed the relationship in the regulatory network, such as mir-378 downregulated the RNA editing 

of ADAR, leading to the variability of constitutive liver expression 59; METTL3 inhibited thyroid cancer progression 

through REL-mediated neutrophil infiltration60. We also identified that some transcription factors or miRNAs were 

shared by different RMWs, suggesting a possible cross-talk between different RNA modification pathways. For 

example, MYC was a common transcription factor for 12 RMWs, and hsa-miR-181d was a miRNA that interacted 

with 3 RMWs simultaneously. 

 

Figure 5. Gene regulatory interaction network construction. Transcription factors and miRNA-regulated RMW 

genes were analyzed using Regnetwork database and visualized using Cytoscape software (triangle for miRNA, red 

square for RMW genes, others for transcription factors). 

3.6. Construction of RNA Modification Writer score and expression and prognosis analysis 

In view of the complexity of RNA modification, we constructed a scoring model to quantitatively evaluate RNA 

modification. Fig. 6A showed the RMW score in 33 tumors. Fig. S3A plots demonstrated differences in RMW score 

in paired cancer samples and adjacent normal samples. Among them, the score of samples was higher in cancers 

such as BLCA, BRCA, COAD, ESCA, HNSC, KICH, LIHC, LUAD, LUSC, PRAD, READ, STAD, and UCEC than in normal 

samples, while normal samples were higher in KIRC.  

To validate the association between RMW score and patient outcome in different tumors, univariate COX 
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regression was used for analysis (Fig. 6B). Four survival models OS (overall survival), DSS (disease-specific survival), 

DFI (disease-free interval), and PFI (progression-free interval) were constructed by R package survminer and 

survival. High RMW scores were significantly associated with poor prognosis of patients in CESC, LIHC and PRAD 

by OS; in KICH, PRAD, CESC by DSS; in KIRP, PRAD, LIHC, CESC, PCPG, ACC by DFI; in KIRP, CESC, PRAD, ACC, LIHC 

by PFI. High scores of RMW score can be regarded as risk factors in above cancers. Summarizing the above results, 

we found when it mentions to RMW score in cancers such as PRAD, LIHC, CESC, and KIRP, it was considered as a 

risky factor significantly by multiple methods, while a protective factor in OV. Interestingly, we found that the RMW 

score in PRAD was not only significantly associated with high mRNA expression in tumors, but also correlated with 

poor prognosis. This suggested that RNA modification may plays a more important role than others in PRAD. 

 

Figure 6. Construction of RNA Modification Writers score and survival analysis of the RMW score in pan-cancer. 

(A). RMW score in 33 tumors, with the scores increasing sequentially from left to right. (B). Survival analysis of the 

RMW score in pan-cancer. OS, DSS, DFI, PFI survival analysis models by univariate Cox regression in pan-cancer. Red 

shows the tumors with a signature p-value, and the abscissa represents log2 (Hazard ratio). 
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3.7. The GSVA analysis of the RMW score 

To further investigate the underlying mechanisms of these RMW in cancer, we performed GSVA to analyze 

pathway level enrichment of 26 RMW gene sets (Fig. 7A). The top5 pathways with the strongest positive correlation 

with RMW score in pan-cancer were MYC TARGETS V1, E2F TARGETS, G2M CHECKPOINT, MYC TARGETS V2, and 

DNA REPAIR. The top5 pathways with the strongest negative correlation with RMW score in pan-cancer were 

MYOGENESIS, XENOBITIC METABOLISM, COAGULATION, ESTROGEN RESPONSE EARLY, and P53 PATHWAY. We 

speculated that the RMW score is related to the growth and proliferation of cancer cells mediated by transcription 

factors, cell cycle and repair of DNA damage which leads to the progression of cancer with these results. 

3.8. Tumor microenvironment analysis of RMW score 

To gain further insight of RMW score on immune response, we assessed association between RMW score and 

the immune microenvironment in cancer samples. As shown in Fig. 7B, heatmap of correlation between RMW scores 

with tumor purity, immune score, ESTIMATE score, and stromal score. A clear correlation was found between RMW 

score and tumor microenvironment (immune score and stromal score). There was a significant negative correlation 

between RMW score and immune score, stromal score, ESTIMATE score, which was consistent with the tumor 

purity trend of RMW in vast majority of cancers. 

Then, we used the correlation analysis between RMW scores and pathways reported in the previous literature54 

to evaluate the tumor microenvironment, including immune-related pathways, matrix/metastasis-related 

pathways and DNA damage repair related pathways (Fig. 7C). We found that RMW scores were positively correlated 

with DNA damage repair pathways in the majority of cancers. However, an overactivated DNA damage repair system 

would promote tumor cell invasion and metastasis. Altogether, these data indicate that majority of above pathways 

may play key roles in connecting RMWs with tumor immunity in these cancers. 

3.9. Immune cell infiltration and correlation analysis of related immune genes 

Immune cells played a crucial role in the tumor microenvironment, and their infiltration is closely related to 

the occurrence and development of tumors. To explore the correlation between RMWs and tumor immune cell 

infiltration, we used online database ImmuCellAI and TIMER2 to analyze the correlation. As shown in Fig. 7D, most 

of the correlation between the expression of RMW genes and the infiltration of immune cells was negative. The top 

three immune cells negatively correlated with RMW gene were NK cells, MAIT cells, and Tfh cells. RMW score 

negatively correlated with multiple immune cell infiltrates were found in Fig. S3B by six different immune 

algorithms (EPIC, TIMER, CIBERSORT, QUANTISEQ, MCPCOUNTER, XCELL) in the TIMER2 database. In both 

databases, we found RMW score was negatively correlated with multiple immune cell infiltrates. To sum up, we 

concluded that tumors with high RMW score may be immune-desert tumors without enough response to 

immunotherapy. 

We investigated the correlation between immune cells and related immune genes in human cancers, including 

immunoactivated genes (Fig. 8A), MHC genes (Fig. 8B), chemokines (Fig. 8C), and chemokine receptor genes (Fig. 

8D). As shown in Figure 13, the RMW score was mostly negatively correlated with these immune-related genes, 

however, the opposite result appeared in THCA and CHOL. The correlation of immune-related genes was consistent 

with the results of immune cell infiltration, so we speculated that RMW inhibited immune-related gene expression 

when it was highly expressed. Therefore, the RMW score has the potential to be used as an important factor in 

determining whether a patient is suitable for immunotherapy. 
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Figure 7. The GSVA analysis of the RMW score and correlation between immune cell infiltration and RMW score. 

(A). Correlation between the RMW score and the cancer hallmark pathway. Red represents positive correlation, blue 

represents negative correlation, * p<0.05; ** p<0.01; *** p<0.001; **** p<0.0001. (B). Heatmap of correlation among 

RMW score and tumor purity, immune score, ESTIMATE score, stromal score. (C). Heatmap of correlation between 

RMW score and immune-related pathways, stroma and metastasis pathways, DNA damage repair related pathways. 

(D). Heatmap of immune cell infiltration in pan-cancer from the ImmuCellAI database.  

3.10. Drug Sensitivity Analysis of RNA Modification Writers 

To investigate the effects of different treatments on patients in high and low RMW score groups, we analyzed 

the prognosis of patients from different treatment data. The Fig. 9A-D data was referred from the previous 

research61, containing patients treated with immunotherapy (Fig. 9A, B) and targeted agents (Fig. 9C, D). As shown 

in Fig. 9A, the overall survival analysis of KIRC patients with targeted therapy mTOR inhibitor demonstrated that 

the low-score group had significantly worse survival than the high-score group. The disease progression histogram 

after everolimus treatment showed the proportion of patients with remission and progression (Fig. 9B, CR: 

complete response; PR: partial response; PD: progressive disease; SD: stable disease). As shown in Fig. 9C, the 

overall survival analysis of KIRC patients treated with nivolumab immunotherapy demonstrated that the low-score 

group had significantly worse survival than the high-score group. With this treatment, 20% of patients in the high-

score group responded and 23% in the low-score group responded (Fig. 9D). As mentioned in the above four figures, 

it indicated that the effect of immunotherapy is better than targeted therapy in high-score group. As shown in Fig. 

9E, the progression-free survival analysis of advanced non-small cell lung carcinoma patients treated with anti-PD-

1/PD-L1 immunotherapy demonstrated that the low-score group had significantly worse survival than the high-
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score group. The disease progression of all patients in the high-score group could not control by the condition of 

immunotherapy, while 33% of the patients in the low-score group were controlled with anti-PD-1/PD-L1 

immunotherapy (Fig. 9E, F). As shown in Fig 9G, the overall survival analysis of metastatic urothelial cancer patients 

treated with immune checkpoint blockade demonstrated that the low-score group had significantly worse survival 

than the high-score group. There were 11% of patients in the high-score group responded and 19% in the low-score 

group responded (Fig. 9G, H). Generally speaking, the low-score group showed better effects and survival in 

immunotherapy than targeted therapy. The analysis of clinical samples in this section further revealed that the RMW 

score may act as a potential biomarker for immunotherapy. After finding low-score group has a poor effect on 

targeted treatment, we investigated the role of RMWs on targeted therapy (Fig. 9I, J). Pearson correlation analysis 

was performed to get the correlation between mRNA expression and drug IC50. Most RMW expression was 

negatively correlated with drug IC50. However, IC50 of 17-AAG, trametinib was positively correlated with the 

majority of RMWs expression. Interestingly, the expression of CFI is positively correlated with IC50, which is contrary 

to other RMWs, meaning that the high expression of CFI may be associated with drug resistance. These results 

suggest that the low expression of most RMWs may mediate the drug resistance, which is consistent with the poor 

efficacy of the low-score group treated with targeted therapy. 

 

Figure 8. Analysis of immune related genes correlation in pan-cancer. (A). Correlation between immunoactivated 

genes and RMW score. (B). Correlation between MHC genes and RMW score. (C). Correlation between chemotactic 

factor genes and RMW score. (D). Correlation between chemokine receptor genes and RMW score. 
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Figure 9. The effect of the RNA Modification Writer score on the prognosis of patients with immunotherapy and 

targeted therapy and prediction of targeted therapeutic drugs. (A). Overall survival analysis of KIRC patients treated 

with targeted therapy. (B). Histogram of disease progression after everolimus treatment. (C). Overall survival 

analysis of KIRC patients treated with immunotherapy. (D). Histogram of disease progression after nivolumab 

treatment. (E). Progression-free survival analysis of NSCLC patients treated with anti-PD-1/PD-L1 from GSE135222. 

(F). Histogram of disease progression after immunotherapy with anti-PD-1/PD-L1. (G). Overall survival analysis of 

patients with EGFR3-altered metastatic urothelial cancer treated with ICB from GSE176307. (H). Histogram of 

disease progression after immunotherapy with ICB. (I). Figure summarizes the correlation between gene 

expression and the sensitivity of GDSC drugs (top 30) in pan-cancer. (J). Figure summarizes the correlation between 

gene expression and the sensitivity of CTRP drugs (top 30) in pan-cancer. 
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4. Discussion 

RNA modification is an important epigenetic mechanism that controls gene expression, and it is involved in 

various biological processes and human diseases, especially cancer. Adenosine alterations are catalyzed by RNA 

modification writers, such as m6A, m1A, APA, and A-to-I editing. In this study, we comprehensively analyzed the 

molecular and clinical characteristics of 26 RMWs in 32 cancers.  

We found that compared with normal samples, most RMW genes were highly expressed in cancer samples. 

After RT qPCR experiments, we verified that ADAR, TRMT10, CPSF2 and other genes were highly expressed in 

pancreatic cancer and colorectal cancer cells. Integrating the sample expression and survival data, we also identified 

some RMWs as risk factors, such as TRMT6, VIRMA, CPSF3, CPSF4, CSTF2, ADAR, and protective factors, such as 

ADARB2, METTL14, TRMT61B. The high expression of these RMW genes has been shown to promote cancer in 

previous reports. For example, TRMT6 promotes hepatocellular carcinoma progression through the PI3K/AKT 

signaling pathway; CPSF4 promotes triple negative breast cancer metastasis by upregulating MDM4; ADAR edits an 

editing site of azin1, resulting in the s367g substitution at this site, which changes the structure and localization of 

the protein and endows the protein with a greater cancer promoting function in HCC. Our study also provides some 

novel insights into the role of RNA modification in cancer. For instance, we revealed that some RMWs had positive 

correlations with different types of modification writers, such as METTL3 with TRMT6 and ADAR with CPSF4, 

indicating potential coordination or cooperation between different RNA modification pathways. 

Genetic alteration is a term that refers to any change in the genome, which can affect the structure, function, 

and expression of genes. Cancer cells often have multiple genetic alterations that confer them with advantages over 

normal cells, such as increased proliferation, survival, invasion, and resistance to therapy. Genetic alterations are 

common events in cancer that affect the expression and function of genes involved in various cellular processes. We 

analyzed the genetic alterations of RMWs in pan-cancer and found that amplification and mutation were the most 

common types of variants, while BRCA, OV, and LUAD had the highest frequency of alterations in cancer, and ZC3H13, 

VIRMA, and PCF11 had the highest frequency of alterations in RMWs. We found that mutations were the second 

most frequent type of alteration after amplifications and that missense mutations were the most common subtype. 

We also found that SNPs were the most prevalent variant type, and that C>T, C>A and T>C were the top three SNV 

classes. 

To further investigate the reasons for the high expression of RMWs, we analyzed the copy number variation, 

methylation of genes and the regulation of transcription factors and mRNAs on RMWs. We analyzed the CNV data 

of RMWs in pan-cancer, and found that heterozygous amplifications and deletions were the main CNV types. We 

also found that some RMWs had high CNV frequencies in certain cancers. For example, ZC3H13 had high CNV 

frequency in BRCA, OV and LUAD. Our analysis revealed that the methylation level of most RMWs was negatively 

correlated with their mRNA expression, suggesting that methylation may act as a repressive mark for gene 

transcription. In addition, we observed that the methylation pattern of RMWs was highly heterogeneous in different 

tumors. Compared with normal samples, the methylation degree of some tumor samples was significantly changed. 

For example, ZC3H13, VIRMA, PCF11, CPSF1, ADARB2 and ADAR were hypermethylated in tumors, while TRMT10C, 

TRMT6, TRMT61B, METTL14 and METTL16 were hypomethylated in tumors, which are consistent with previous 

studies that reported the differential methylation of RMWs in cancer. In addition, we investigated the regulation of 

RMWs by transcription factors and miRNAs. We identified that some RMWs were regulated by multiple 

transcription factors or miRNAs, indicating a complex regulatory network for RNA modification. We also identified 

that some transcription factors or miRNAs were shared by different RMWs, suggesting a possible cross-talk between 

different RNA modification pathways.  

To further analyze the heterogeneity and complexity of RMW, we constructed a scoring model to quantify the 

mode of action of RMW. First, we performed the RMW score for each tumor, and compared the RMW score between 
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each cancer sample and its corresponding normal sample. Among them, the RMW score of most cancer samples, 

such as BLCA, BRCA, COAD, ESCA, HNSC, KICH, LIHC, LUAD, LUSC, PRAD, READ, STAD, UCEC, is higher than that of 

normal samples. The RMW score and the prognosis of each cancer were analyzed in pan-cancer, and Cox regression 

analysis was carried out using four different models: OS, DSS, DFI, PFI. Next, we analyzed the correlation between 

RMW score and tumor related pathways, immune related pathways and immune related cells (Immune activating 

genes, MHC genes, chemokine genes, chemokine receptor genes) to examine the pathways and gene enrichment 

levels of 26 RWMs. We found that the five pathways with the strongest positive correlation with RNA modification 

writer score in pan-cancer were MYC target V1, E2F target, G2M checkpoint, MYC target V2, and DNA repair. These 

results suggest that RNA modification writer score may be related to transcription factor mediated growth and 

proliferation of cancer cells, cell cycle and repair of DNA damage, thus leading to the occurrence and development 

of cancer.  

To gain further insight of the RMW score on immune response, we assessed association between RNA 

Modification Writer score and the immune microenvironment in cancer samples. We found a clear correlation 

between RNA Modification Writer score and tumor microenvironment (immune score and stromal score). There 

was a significant negative correlation between RNA Modification Writer score and immune score, stromal score and 

ESTIMATE score, and a significant positive correlation between RNA Modification Writer score, which was 

consistent with the tumor purity trend of RMW in vast majority of cancers. We also assessed the tumor 

microenvironment, including immune-related pathways, matrix/metastasis-related pathways and DNA damage 

repair related pathways. We found that RMW scores were positively correlated with DNA damage repair pathways 

in the majority of cancers. However, overactivated DNA damage repair system would promote tumor cell invasion 

and metastasis. Altogether, these data indicate that some of these pathways may play key roles in connecting tumor 

RNA Modification Writer with tumor immunity in these cancers. 

To investigate the effects of different treatment on patients in high and low RMW score groups, we analyzed 

the prognosis of patients from different treatment data. We found that the low RMW score group showed better 

effects and survival in immunotherapy than targeted therapy. We also found that the RMW score was associated 

with the therapeutic efficacy of PD-L1 blockade, suggesting the development of potential drugs targeting these 

RMWs to aid the clinical benefits of immunotherapy.  

In order to investigate the role of RMWs on targeted therapy, we integrated drug sensitivity and gene 

expression profiling data of cancer cell lines from the GDSC and CTRP databases. We performed Pearson correlation 

analysis to get the correlation between gene mRNA expression and drug IC50 and found that most RMWs’ expression 

was negatively correlated with drug IC50 by GDSC and CTRP databases. These results suggest that the low expression 

of most RMW genes may mediate the resistance to chemotherapy and targeted drug therapy, which is consistent 

with the poor efficacy of low group treated targeted therapy we previously found. 

In conclusion, we provided new insights into the role of RMWs in cancer development and progression, and 

suggested that RMWs can be serve as potential biomarkers for personalized treatment of cancer patients for 

targeted therapy and immunotherapy. 
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Supplementary 

 

Supplementary Figure 1. Expression correlation and variation of RMWs in pan-cancer. (A). Expression correlation 

of each two RMWs in pan-cancer. The color of the square represents the correlation coefficient, red represents the 

positive correlation, and blue represents the negative correlation. (B). Heatmap of the frequency of single nucleotide 

variation of RMWs in pan-cancer. The color of the square represents the frequency, and the darker the color, the 

higher the mutation frequency. 
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Supplementary Figure 2. Homozygous and heterozygous copy number variation of RMWs in pan-cancer. (A). 

Figure provides the profile of heterozygous CNV of RMW in pan-cancer. (B). Figure provides the profile of 

homozygous CNV of RMW in pan-cancer. The dot size represents the ratio of copy number variation, blue represents 

deletion, and red represents amplification. 
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Supplementary Figure 3. The difference in RMW scores between cancer samples and control normal samples in cancers and 

correlation with immune infiltration. (A). Differences in RMW score between paired cancer samples and adjacent samples. (B). The 

correlation between RMW score and immune cell (B cell, class switched memory B, cancer associated fibroblast, T cell CD4 central 

memory, T cell CD4 effector memory, T cell CD4, T cell CD4 memory actived, T cell CD4 memory resting, T cell CD4 memory, T cell CD4 

naive, T cell CD4 non regulatory, T cell CD4 Th1, T cell CD4 Th2, T cell CD8 central memory, T cell CD8, T cell CD8 effector memory, T 

cell CD8 naive, Myeloid dendritic cell actived, Myeloid dendritic cell, Myeloid dendritic cell resting, Plasmacytoid dendritic cell, 

Endothelial cell, Eosinophil, T cell gamma delta, Hematopoietic stem cell, Macrophage, Macrophage M0, Macrophage M1, Macrophage 

M2, Macrophage Monocyte, Mast cell activated, Mast cell resting, Mast cell, Monocyte, Neutrophil, NK cell activated, NK cell, NK cell 

resting, T cell NK, Common lymphoid progenitor, Common myeloid progenitor, Granulocyte monocyte progenitor, T cell follicular helper, 

T cell regulatory) infiltration by six models (EPIC, MCPCOUNTER, CIBERSORT, CIBERSORT ABS, XCELL, QUANTISEQ, TIMER), the red 

square represents the positive correlation, the green square represents the negative correlation, and the solid square represents the 

correlation has significant difference. 

https://www.anserpress.org/journal/CI
https://doi.org/10.58567/ci03020004
https://www.anserpress.org/journal/CI


Article                                                        Cancer Insight | 10.58567/ci03020004                                   

Cancer Insight | 2024 3(2) 42-66 
  63 
 

Supplementary Table 1. Primer sequences for genes in RT-qPCR. 

Name Sense (5’-3’) Antisense (5’-3’) 

GAPDH CGACCACTTTGTCAAGCTCA AGGGGTCTACATGGCAACTG 

ADAR ACGGGCCCTCTAGACTCGAGCGCCACCATGAATCC

GCGGCAGGGGTATTCCCTC 

AGTCACTTAAGCTTGGTACCGATACTGGGCA

GAGATAAAAGTTCTTTTC 

TRMT6 AGTCACTTAAGCTTGGTACCGAT CCACCTCCACTCATCAGCAG 

TRMT10C TCAAGCTGCTAGAAACCACTG TCTGTGCAAAGCACCATCTATT 

NUDT21 ACAAGTACATCCAGCAGACGAAGC AGCCGGTGCTCATGTACAATCAG 

CPSF2 ATGACGTCTATTATCAAATTAACTA TTATACAATGGCATATTGTTCATAT 

CSTF1 TCGCCAATGGCCTCATCAAT TGCATACTGAACTGCGGTGT 

CSTF2 ATGACGTCTATTATCAAATTAACTA TTATACAATGGCATATTGTTCATAT 
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