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ABSTRACT  

Background: Hepatocellular carcinoma (HCC) stands out as one of the most lethal cancers globally, given its 

complexity, recurrence following surgical resection, metastatic potential, and inherent heterogeneity. In recent 

years, researchers have systematically elucidated the significance of long non-coding RNA (lncRNA) in the initiation 

and progression of HCC. The introduction of The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) 

databases has significantly enhanced the prognostic assessment of HCC. However, the association between HCC and 

cell senescence has been infrequently explored in the literature. Method: We downloaded liver hepatocellular 

carcinoma (LIHC)-related messenger RNA and lncRNA expression levels from TCGA. Correlation analysis, Cox 

regression, and least absolute shrinkage and selection operator (LASSO) regression analysis were employed to 

validate the lncRNA risk model associated with cellular aging. Comparing the infiltration of diverse immune cells 

enabled the identification of distinct differences in the immunological microenvironments of the two risk groups. 

Subsequently, we conducted a real-time polymerase chain reaction (qPCR) experiment to confirm the accuracy of 

the selected lncRNAs. Results: A predictive framework for HCC was constructed based on the expression levels of 

five lncRNAs. Multivariate and univariate Cox regression analyses revealed that lncRNA signatures associated with 

https://www.anserpress.org/journal/CI
mailto:jacob6666@163.com
mailto:Robertluoyi@126.com
https://www.anserpress.org/


Article                                                        Cancer Insight | 10.58567/ci03020003                                   

Cancer Insight | 2024 3(2) 26-41 
  27 
 

senescence were independently correlated with an increased risk of HCC. Additionally, the nomogram also provides  

a more refined and sensitive model. Further investigation into the variations in immune cells and functions between 

the high-risk and low-risk groups was conducted. Subsequently, a qPCR experiment results revealed 

underexpression of AC068756.1, AC090578.1, AC145343.1, and LINC0022 in Huh7 and LM3 cells. In contrast, 

AP003392.4 did not exhibit a significant difference between Huh7 and control cells. Conclusion: The prognostic 

features and nomogram, consisting of five aging-related lncRNAs (AC068756.1, AC090578.1, AC145343.1, 

AP003392.4, and LINC00221), may be useful in predicting the overall survival of HCC. 
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1. Introduction 

Primary liver cancer, ranked as the sixth most common malignancy, stands as the third leading cause of death 

globally. The incidence of intrahepatic cholangiocarcinoma and hepatocellular carcinoma (HCC) has increased in 

recent times [1]. Currently, the clinical treatment methods include surgery, interventional therapy, local ablation 

[2], and targeted drugs [3]. Despite recent breakthroughs in treatment strategies, the prognosis of patients remains 

notably poor, with a high likelihood of recurrence and significant accompanying complications causing 

considerable distress to patients [4, 5]. Therefore, it is imperative to conduct accurate prognostic screenings to 

identify risk factors tailored to the specific conditions of patients with liver cancer. This effort aims to enhance the 

effectiveness of current clinical treatment and predict and ameliorate the prognosis for individuals affected by this 

disease. 

Among the most fundamental biological processes, aging is a ubiquitous phenomenon observed in all 

organisms [6]. In contemporary understanding, cellular senescence has emerged as a pivotal risk factor in the 

advanced stages of numerous malignancies [7-9]. This is attributed to its role in increasing the susceptibility of 

cancer cells to external stress and their sensitivity to treatment. During the process of malignant transformation, 

tumor cells undergo a continuous acquisition of new functions [10], contrary to the aging process characterized by 

functional degeneration and loss of tissue function [11, 12]. Therefore, understanding the senescence process of 

HCC cells is important [13]. 

Transcripts exceeding 200 nucleotides in length are classified as long non-coding RNA (lncRNA). The 

occurrence and progression of various cancer types have been associated with lncRNA [14-16]. Abnormal 

sequences and expression levels of lncRNA are often linked to processes such as epithelial-mesenchymal transition 

[17], chemoradiotherapy sensitivity [18], and cell proliferation and migration [19]. Despite the recent surge in 

research on lncRNAs, the functions of numerous long intergenic non-coding RNAs (lincRNAs) remain unknown [20], 

especially their role in regulating the prognosis of liver cancer cells, which has been rarely researched.  

2. Materials and Methods 

2.1. Data acquisition 

The Cancer Genome Atlas (TCGA) (http://portal.gdc.cancer.gov/) was used to download HCC expression 

patterns that matched clinical data. A total of 425 patients' messenger RNA (mRNA) and lncRNA expression 

patterns were considered. To validate the outcomes of the TCGA data analysis, two datasets (Test1 and Test2) were 

randomly grouped using the "Caret" package in R (version 4.2.0). 

2.2. To screen aging-related genes and construct a lncRNA co-expression network  

A total of 279 aging genes were downloaded from the Molecular Signatures Database (MSigDB) v7.1 

(https://www.gsea-msigdb.org/gsea/index.js). Subsequently, the Veen diagram package (version 1.7.1) was used 

to screen 272 genes associated with aging. The "limma" package in R (version 4.2.0) was utilized to examine the 

correlation of aging-related genes (corFilter=0.4, pvalueFilter=0.001) and exclude aging-related lncRNAs. The 

visualization of the genes was accomplished using the "igraph" package in R (version 4.2.0). 

2.3. Differential gene analysis 

The "limma" package was employed to investigate the differences in lncRNAs in the R (version 4.2.0). The 

filter criteria were set at P < 0.05 and | log2FC | > 0.6. Ultimately, 18 differentially expressed aging-related lncRNAs 
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(ARGLnExp) were identified. 

2.4. Construction and assessment of prognostic risk score model 

Prognostic screening for ARGLnExp was performed through univariate Cox regression analysis. The least 

absolute shrinkage and selection operator (LASSO) algorithm was then executed to determine the value of the 

minimum cross-validation error and identify the optimal prognostic gene for the model. The final prognostic model 

was constructed using stable ARGLnExp. Kaplan–Meier and receiver operating characteristic (ROC) curves were 

employed to evaluate differences in prognosis among groups and to ascertain the survival rates at 1, 3, and 5 years. 

Finally, the correlation between patients in low- and high-risk groups and clinical information was calculated. 

2.5. Establishment of nomogram prognosis prediction model 

To plot the lipopograph model in conjunction with patient age, sex, grade, stage, and risk score, the "RMS" 

package in R (version 4.2.0) was utilized. Calibration curves were generated to illustrate the alignment between 

the actual survival probability at 1, 3, and 5 years and the predictions of the nomogram. Finally, the model was 

validated using the ROC curve, multivariate Cox regression, and univariate Cox regression. 

2.6. Comparison of high-risk and low-risk groups for gene enrichment 

A group of R-packets Different expressions of ARGLnExp were analyzed using Profiler's gene body Gene 

Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses to see which 

biological pathways might be involved. To investigate the connection between biology and genetics, a gene set 

enrichment analysis (GSEA) was performed on the C2 (C2. Cp. Kegg. 7.5.1. Entrez. GMT) MSigDB. P <0.05 was 

considered significant, and 1000 permutations of the sample size were executed. The correlation between high- 

and low-risk groups for immune cell infiltration was assessed. To quantify the presence of tumor-infiltrating 

immune cells in HCC tumor samples, the Cell-type Identification by Estimating Relative Subsets of RNA Transcripts 

(CIBERSORT) R package was utilized. Finally, we examined the morphological and functional differences of tumor 

immune cells using the R software packages "reshape2," "GSVA," and "GSEABase" (version 4.2.0). 

2.7. Culture and therapy of cell lines 

Huh7, LM3, and HL-702 HCC cells were cultured in a humidified atmosphere at 37 ˚C and 5% carbon dioxide 

using Dulbecco’s Modified Eagle Medium supplemented with 10% fetal bovine serum. The cell cultures utilized a 

complete set of Gibco, USA, cell culture supplies. To minimize the impact of cell line passage on experimental results, 

cell lines within the last ten generations were selected. 

2.8. Separation of RNA and real-time reverse transcription-polymerase chain reaction (qRT-PCR) 

The total RNA from the cells was isolated using an RNA Isolation Kit (Vazyme, Nanjing, China). Reverse 

transcription was performed using the HiScript II Q RT SuperMix for qPCR (Vazyme, Nanjing, China). The mRNA 

concentration was determined by adhering to the manufacturer's instructions for the ChamQ Universal SYBR qPCR 

Master Mix (Vazyme, Nanjing, China). Primer fragments are provided in Supplemental Material 1. The analysis of 

mRNA expression levels was performed using the 2^ΔCt method, with normalization to beta-actin.  
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2.9. Statistical tests 

All statistical tests were performed in GraphPad Prism 8.0. (GraphPad Software, San Diego, CA, USA). To 

determine whether there was a statistically significant difference among the means of multiple groups, a one-way 

analysis of variance was conducted. The mean and standard deviation were displayed for all statistical data. 

Statistical significance was considered when P < 0.05. 

3. Result 

3.1. Screening and co-expression network construction of aging-related lncRNA 

We screened 271 aging-related gene expressions from TCGA using the Veen diagram package. Through co-

expression analysis, we identified 64 lncRNAs with significant associations and constructed an mRNA-lncRNA co-

expression network (FIG. 1). Subsequently, 18 differentially expressed lncRNAs were identified through differential 

analysis. 

 

Figure 1. Aging-related co-expression regulatory network 

3.2. Prognostic risk signature construction of ARGLnExps 

Based on univariate Cox regression analysis, seven lncRNAs were identified as prognostic factors (FIG. 2A). 

Finally, we screened five lncRNA analysis features using LASSO analysis (FIG. 2B, C). AC068756.1, AC090578.1, 

AC145343.1, AP003392.4, and LINC00221 were identified as risk factors for the prognosis model. The following 

equation was used for the risk score of each patient with HCC: risk score = (0.19 × AC068756.1 expression) + (0.22 
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× AC090578.1 expression) + (0.10 × AC145343.1 expression) + (0.75 × AP003392.4 expression) + (0.02 × 

LINC00221 expression). Ultimately, the median risk score was used to classify patients with HCC from TCGA into 

high-risk and low-risk groups. 

 
Figure 2. Construction of the prognostic model in TCGA-LIHC. (A) According to the results of univariate Cox 

regression analysis, a total of 7 LncRNA were identified as prognostic genes; (B) LASSO coefficient profiles of the 

prognostic genes; (C) Turning optimal parameter (lambda) screening in the LASSO model. 

3.3. Assessment of the predictive performance of the ARGLnExps signature 

Using the median risk score as a basis, both the training and validation sets were separated into low-risk and 

high-risk subgroups (FIG. 3A, B, C). Patients in the low-risk group exhibited a more favorable prognosis, surviving 

longer than those in the high-risk group, as illustrated by the Kaplan–Meier survival curve (FIG. 3D). Furthermore, 

we investigated the accuracy of the prognostic risk profile using external validation datasets Test1 and Test2, 

revealing consistent overall survival (OS) differences between low- and high-risk groups (FIG. 3E, F). The scatter 

plot in FIG. 3G, along with the validation set, corroborates the conclusion that high-risk patients with HCC 

experienced a higher mortality rate than low-risk patients with HCC (FIG. 3H, I). In a ROC analysis, our prognostic 

prediction demonstrated excellent sensitivity and specificity, as indicated by the area under the curves (AUCs) of 

0.643 for 1-year survival rates, 0.580 for 3-year survival rates, and 0.570 for 5-year survival rates. A Cox regression 

study revealed that the ARGLnExps prognostic risk model is an independent predictor of HCC prognosis (FIG. 4A, 

B). Using the ROC analysis, we sought to assess the relationship between clinical features and prognostic value. A 
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comparison of the AUC for the model with those of age, sex, and stage—yielding values 0.532, 0.502, and 0.624, 

respectively—reveals that the model's sensitivity and specificity were inadequate. Further clinical correlation 

analysis (FIG. 4D-I) revealed differences in the stage between the high- and low-risk groups, particularly notable in 

Stage I and Stage III with the most significant discrepancies (P = 0.0026); however, no significant differences were 

observed in terms of sex, grade, or stage (except T1 and T3). 

 

Figure 3. Evaluation of the prognostic signature in TCGA-LIHC. (A-I) Distribution of risk scores, Kaplan-Meier 

(KM) curves, and survival status of the aging-related risk LncRNAs; (J) ROC curves of 1-year, 3-year and 5-year 

survival rates 
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Figure 4. Relationship between the risk groups and clinical features in TCGA-LIHC. (A, B) Cox regression analysis 

of risk scores and other clinical characteristics (Age, Gender, Stage); (C) ROC curve of clinical characteristics; (D-I) 

Relationship between the risk groups and clinical features in TCGA-LIHC. 

3.4. Construction and assessment of nomograms 

Nomograms were constructed to predict the 1-, 3-, and 5-year survival rates for patients with colorectal cancer 

based on age, sex, stage, and the risk score of the five ARGLnExps. This approach was adopted owing to the poor 

sensitivity and specificity in the aforementioned model (FIG. 5A). The fifth-year survival prediction closely aligns 

with the actual value, as indicated by the correction curve (FIG. 5B). The AUC value in the ROC curve (FIG. 5C) was 

0.74, signifying the accuracy of the model. Subsequently, single-variable and multiple-variable Cox regression 

analyses demonstrated that the nomogram model accurately predicted the prognosis for patients with HCC (FIG. 

5D, E). 
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Figure 5. Nomogram prediction model and evaluation. (A) Nomogram of age, gender, stage, TNM, and risk score 

for predicting 1 -, 3 -, and 5-year survival. (B) 1-year, 3-year and 5-year calibration curves for the TCGA. (C) ROC 

curve of Nomogram; (D) Cox regression analysis of risk score and other clinical characteristics of Nomogram (age, 

Gender, Stage) 

3.5. Gene enrichment analysis 

Using GSEA enrichment analysis, the enrichment difference between the low- and high-risk groups was 

observed. Notably, the low-risk group exhibited enrichment in pathways such as cell cycle, complement and 

coagulation cascade, fatty acid metabolism, N-glycan biosynthesis, and oocyte meiosis. In contrast, the high-risk 
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group displayed enrichment in pathways including primary bile acid biosynthesis, proteasome, spliceosome, 

tryptophan metabolism, and valine leucine and isoleucine degradation (FIG. 6A). Numerous biological processes 

were found to involve ribonucleoprotein complexes, including mRNA processing, RNA splicing, ncRNA processing, 

ribosome biogenesis, ribosomal RNA processing, and cytoplasmic translation. The cells exhibit abundance in 

components related to various cellular structures and processes, including the U2-type spliceosome complex, the 

spliceosome catalytic step 2, the ribosomal subunit, the cytosolic ribosome, the nuclear envelope, the nuclear speck, 

the cell-substrate junction, the focal adhesion, the chromosomal region, and the spliceosome complex. Several 

molecular activities were significantly enhanced, including transcription-enabling factor activity, DNA-binding 

transcription factor binding, RNA catalytic activity, cadherin binding, ubiquitin-like protein ligase binding, ubiquitin 

protein ligase binding, histone binding, transferase activity, transmitting one-carbon groups, ribosomal functional 

constituent, and transfer RNA catalytic activity (FIG. 6B). Additionally, KEGG enrichment analysis revealed 

significant enhancements in pathways such as spliceosome, cell cycle, ribosome, coronavirus disease-COVID-19, 

proteasome, nucleocytoplasmic transport, endocytosis, complement, and coagulation cascades (FIG. 6C). 

 

Figure 6. Enrichment analysis. (A) GSEA enrichment analysis. (B) GO enrichment analysis; (C) KEGG enrichment 

analysis. 

3.6. Relationship between tumor immune cell invasion and threat score 

The CIBERSORT algorithm was used to determine the score of immune cells in the tumor group, and the 
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difference in immune cell composition between the high- and low-risk groups was computed (FIG. 7A). As depicted 

in the figure, T cell CD4 memory activation is more evident in the high-risk groups (P 0.05), whereas natural killer 

(NK) cell activation and monocyte infiltration are dramatically increased in the low-risk group. In the analysis of 

immune cell function (FIG. 7B), it was observed that major histocompatibility complex class I was more significant 

in the high-risk group, whereas Type I and Type II interferon responses were more significant in the low-risk group. 

 

Figure 7. Immunoinfiltration analysis. (A) Correlation between risk score model and tumor infiltrating immune 

cells; (B) Correlation between risk score model and tumor infiltrating immune cell function. * P < 0.05; ** P < 0.01; 

*** P < 0.001. 
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3.7. To determine whether aging-related lncRNA is expressed in HCC cells 

To verify the validity of the TCGA dataset, we measured the expression levels of five senescence-related 

lncRNAs in cells using qRT-PCR. Among them, AC068756.1, AC090578.1, AC145343.1, and LINC00221 exhibited 

low expression in Huh7 and LM3 cells; however, AP003392.4 did not exhibit a significant difference between Huh7 

and control cells (FIG. 8). 

 
Figure 8. Validation of prognostic LncRNA. 

4. Discussion 

In recent years, given the rising incidence of HCC, the prevailing approach for diagnosing and prognostic 

evaluation primarily hinges on pathological evaluation and tumor-node-metastasis staging [21]. However, owing 

to the considerable heterogeneity of HCC, these assessment methods lack the desired sensitivity [22]. The 

sensitivity in diagnosing early HCC was reported to be only 47% [23]. Therefore, there is an urgent need for a more 

effective diagnostic and prognostic marker to improve clinical outcomes. 

In this study, we developed a unique predictive model by combining five lncRNA signatures associated with 

aging. In this model, AC068756.1, AC090578.1, AC145343.1, AP003392.4, and LINC00221 were identified as 

prognostic risk factors. The developed model demonstrates a commendable ability to distinguish the OS rate 

between the high- and low-risk groups. Notably, the survival rate among low-risk groups is significantly better than 

that among high-risk groups. The ROC curve analysis further highlights that the 5- and 3-year survival rates of the 

patients are both lower than the 1-year survival rate. However, the clinical correlation analysis of patients revealed 

that the ROC of the model was 0.570, indicating suboptimal sensitivity and specificity. Therefore, we further 

analyzed the clinical correlation and observed no statistically significant correlation between age, sex, and stage. 

Consequently, we constructed a nomogram, establishing a more accurate model. The ROC curve of the 

nomogram indicates reasonable specificity and sensitivity. This suggests that the model has great potential in 

predicting the prognosis of patients with HCC. 

Indeed, DNA damage, telomere malfunction, oncogene activation, and organelle stress represent just a subset 

of external and internal variables capable of inducing cellular senescence. Cellular senescence is intricately linked 

to functions such as tumor suppression, tissue repair, embryogenesis, and organismal aging [24, 25]. Cellular 

senescence is an inherently unpredictable and difficult-to-manage dynamic process [26]. Aging has been implicated 
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in numerous studies on chronic diseases and common malignancies, such as colorectal cancer [27]. In recent years, 

there has been a growing body of research dedicated to understanding the processes associated with aging. HE [12] 

explored the cellular regulation of the body through single-cell omics. Meanwhile, Johnson [8] demonstrated that 

age-dependent variations in lipid metabolism are associated with aging. Despite these insights, our understanding 

of cancer cell aging remains incomplete, and the development of an accurate prediction model would significantly 

contribute to unraveling the relationship between aging and cancer. GO analysis reveals that senescence may exert 

control over cells through various cellular components, including the nuclear envelope, nuclear speck, cell-

substrate junction, focal adhesion, chromosomal region, spliceosome complex, ribosomal subunit, cytosolic 

ribosome, U2-type spliceosome complex, and catalytic step 2 spliceosome. Moreover, senescence may influence 

cells through processes such as transcription coregulator activity and DNA binding. Additionally, in terms of the 

KEGG pathway, aging may predominantly regulate the aging process by influencing pathways such as the cell cycle 

and nucleocytoplasmic transport. Notably, there is growing evidence that cellular senescence plays a pivotal role 

in the immune surveillance of cancer [26, 28]. 

Our study demonstrated the relationship between cell aging and immune infiltration. Using LASSO regression, 

we constructed a model for immune cell infiltration scores, which proved capable of predicting survival times with 

a high degree of accuracy. The intricate interplay between lncRNAs and the molecular pathways involved in NK cell 

activation underscores their potential as therapeutic targets for enhancing antitumor and antiviral immune 

responses. Moreover, the influence of lncRNAs extends to monocyte infiltration, as these molecules actively 

participate in modulating chemotactic signals and adhesion molecules, thereby influencing the recruitment and 

behavior of monocytes within tissues. In a study conducted by Wu et al., the effect of AC145343.1 on the progression 

of liver cancer was investigated using a genomic instability-derived lncRNA signature. The findings revealed that 

the high-risk group exhibited increased immune cell infiltration, including B-cell memory, macrophage M0, and 

neutrophils. The risk score model derived from this investigation represents a novel prognostic tool designed to 

improve survival prediction following HCC diagnosis. 

LncRNA can be used as a potential biomarker for HCC diagnosis. Beyond its diagnostic value, extensively 

studied in previous research [29, 30], lncRNA also plays a role in predicting the prognosis of HCC. In our study, the 

model constructed with five lncRNAs demonstrates effective prognostic prediction for patients. The tests 

conducted on Huh7 and LM3 cells demonstrated significant under-expression of AC068756.1, AC090578.1, 

AC145343.1, and LINC00221. However, AP003392.4 did not exhibit a statistically significant difference. We will 

continue to further investigate the specific role of these five lnRNAs in HCC. 

Although this study provides important evidence on the use of the risk score model in the prognosis of HCC, it 

has some limitations. The study relied on retrospective data and might have missed some important information 

for each patient. More data need to be collected prospectively to further validate these outcomes. Nevertheless, 

understanding cell aging using the risk score provides important insight that will improve the diagnosis and 

prognosis of patients with HCC. 

In conclusion, the risk characteristic associated with aging can predict the severity and immune cell infiltration 

of patients with HCC. 

5. Conclusion 

In conclusion, a prognosis model for aging based on five lncRNAs that have a high predictive value was 

developed. This study offers a novel approach to the customized therapy of patients with HCC. 
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